The MovieLens Datasets: History and Context

被引:3084
作者
Harper, F. Maxwell [1 ]
Konstan, Joseph A. [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, 4-192 Keller Hall,200 Union St SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Datasets; MovieLens; ratings; recommendations;
D O I
10.1145/2827872
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Movie Lens datasets are widely used in education, research, and industry. They are downloaded hundreds of thousands of times each year, reflecting their use in popular press programming books, traditional and online courses, and software. These datasets are a product of member activity in the MovieLens movie recommendation system, an active research platform that has hosted many experiments since its launch in 1997. This article documents the history of MovieLens and the MovieLens datasets. We include a discussion of lessons learned from running a long-standing, live research platform from the perspective of a research organization. We document best practices and limitations of using the MovieLens datasets in new research.
引用
收藏
页数:19
相关论文
共 42 条
[1]  
[Anonymous], 2000, TECHNICAL REPORT
[2]   Using Groups of Items for Preference Elicitation in Recommender Systems [J].
Chang, Shuo ;
Harper, F. Maxwell ;
Terveen, Loren .
PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW'15), 2015, :1258-1269
[3]  
Cosley D., 2003, PROC SIGCHI C HUM FA, P585
[4]  
Cosley Dan, 2005, P SIGCHI C HUM FACT, P11, DOI [10.1145/ 1054972.1054975, DOI 10.1145/1054972.1054975]
[5]   Item-based top-N recommendation algorithms [J].
Deshpande, M ;
Karypis, G .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :143-177
[6]  
DRENNER S, 2006, P SIGCHI C HUM FACT
[7]  
Dror G, 2012, JMLR WORKSH C P P KD, V18, P3
[8]  
Ekstrand Michael D., 2015, P 9 ACM C REC SYST, P11, DOI [10.1145/2792838.2800195, DOI 10.1145/2792838.2800195]
[9]  
Ekstrand Michael D., 2011, RETHINKING RECOMMEND, P133, DOI DOI 10.1145/2043932.2043958
[10]  
Gladwell Malcolm, 1999, NEW YORKER