Exact Solutions of Generalizes the Harry Dym Equation Using Lie Group Analysis

被引:2
作者
Korpinar, Zeliha [1 ]
机构
[1] Mus Alparslan Univ, Dept Adm, Fac Econ & Adm Sci, TR-49250 Mus, Turkey
关键词
Lie Group Analysis; Harry Dym Equation; Group Analysis;
D O I
10.1166/jap.2018.1424
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, Lie symmetry analysis is accomplished on generalizes Harry-Dym equation. With principle of point symmetry, vector fields of these equations are presented. Exact solutions and similarity reductions are acquired influenced by optimal system method. Finally, exact analytic solutions are regarded by applying power series method.
引用
收藏
页码:289 / 291
页数:3
相关论文
共 42 条
[31]   Lie symmetry analysis and invariant solutions of (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation [J].
Hu, Hengchun ;
Sun, Runlan .
MODERN PHYSICS LETTERS B, 2022, 36 (05)
[32]   Investigation of Some Time–Space M-Truncated Partial Differential Equations: Lie Symmetry Analysis, Exact Solutions and Conservation Laws [J].
Rahioui M. ;
El Kinani E.H. ;
Ouhadan A. .
International Journal of Applied and Computational Mathematics, 2024, 10 (2)
[33]   Group Analysis, Fractional Explicit Solutions and Conservation Laws of Time Fractional Generalized Burgers Equation [J].
Wang, Gang-Wei ;
Kara, A. H. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (01) :5-8
[34]   Painlevé analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics/plasma physics [J].
Liu, Fei-Yan ;
Gao, Yi-Tian ;
Yu, Xin ;
Ding, Cui-Cui ;
Deng, Gao-Fu ;
Jia, Ting-Ting .
CHAOS SOLITONS & FRACTALS, 2021, 144
[35]   Lie group analysis and robust computational approach to examine mass transport process using Jeffrey fluid model [J].
Bhatti, Muhammad Mubashir ;
Jun, Shen ;
Khalique, Chaudry Masood ;
Shahid, Anwar S. ;
Fasheng, Liu ;
Mohamed, Mohamed S. .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 421
[36]   A new time dependent approach for solving electrochemical interfaces Part I: theoretical considerations using lie group analysis [J].
Alfred Huber .
Journal of Mathematical Chemistry, 2010, 48 :856-875
[38]   Lie group analysis on EMHD Jeffrey nanofluid flow with exponential heat source: Heat transfer optimization using RSM [J].
Tak, Priya ;
Poonia, Hemant ;
Areekara, Sujesh ;
Mathew, Alphonsa .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2025, 86 (08) :2669-2690
[39]   Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma [J].
Du, Xia-Xia ;
Tian, Bo ;
Qu, Qi-Xing ;
Yuan, Yu-Qiang ;
Zhao, Xue-Hui .
CHAOS SOLITONS & FRACTALS, 2020, 134
[40]   Similarity reduction, group analysis, conservation laws, and explicit solutions for the time-fractional deformed KdV equation of fifth order [J].
Al-Denari, Rasha B. ;
Ahmed, Engy. A. ;
Seadawy, Aly R. ;
Moawad, S. M. ;
EL-Kalaawy, O. H. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (11)