Chacon transformations: Combinatorics, geometric structure, link with systems of complexity 2n+1

被引:28
作者
Ferenczi, S [1 ]
机构
[1] LAB MATH DISCRETES,CNRS UPR 9016,F-13288 MARSEILLE 9,FRANCE
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 1995年 / 123卷 / 02期
关键词
D O I
10.24033/bsmf.2260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Chacon's map is a system of complexity (2n - 1); we describe the associated graph of words, and use it to give a primitive form of the substitution, and a geometric representation of the transformation, as an exduction of a triadic rotation; then we compute the complexity of some more general systems, substitutive or not, which are the simplest known weakly mixing systems.
引用
收藏
页码:271 / 292
页数:22
相关论文
共 11 条
[1]   GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1 [J].
ARNOUX, P ;
RAUZY, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :199-215
[3]   SPECTRUM OF DYNAMICAL-SYSTEMS ARISING FROM SUBSTITUTIONS OF CONSTANT LENGTH [J].
DEKKING, FM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 41 (03) :221-239
[4]   CHACON AUTOMORPHISM HAS MINIMAL SELF JOININGS [J].
DELJUNCO, A ;
RAHE, M ;
SWANSON, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 37 :276-284
[5]  
DELJUNCO A, 1987, ERGODIC TH DYN SYST, V2, P229
[6]  
FERENCZI S, 1990, THESIS U AIX MARSEIL
[7]  
FIELDSTEEL A, 1980, UNCOUNTABLE FAMILY P
[8]  
Herman R. H., 1992, INT J MATH, V3, P827, DOI 10.1142/S0129167X92000382
[9]  
HOST B, 1994, DIMENSION GROUPS SUB
[10]  
MOSSE B, NOTIONS RECONNAISSAB