DUALIZING COMPLEXES OF AFFINE SEMIGROUP RINGS

被引:21
作者
SCHAFER, U [1 ]
SCHENZEL, P [1 ]
机构
[1] MARTIN LUTHER UNIV,SEKT MATH,O-4010 HALLE,GERMANY
关键词
D O I
10.2307/2001715
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an affine semigroup ring we construct the dualizing complex in terms of the semigroup and the homology of the face lattice of the polyhedral cone spanned by the semigroup. As a consequence there are characterizations of locally Cohen-Macaulay rings, Buchsbaum rings, and Cohen-Macaulay rings as well as Serre's condition T(1).
引用
收藏
页码:561 / 582
页数:22
相关论文
共 25 条
[1]   ON THE CANONICAL MODULE FOR MONOMIAL CURVES [J].
BRESINSKY, H ;
SCHAFER, U ;
SCHENZEL, P .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (09) :1799-1814
[2]  
BRONSTED A, 1983, INTRO CONVEX POLYTOP
[3]  
FOLKMAN J, 1966, J MATH MECH, V15, P631
[4]  
GOTO S, 1976, TOKYO J MATH, V2, P237
[5]  
GOTO S, 1978, J MATH SOC JAPAN, V30, P172
[6]  
Goto S., 1976, JAPAN J MATH, V2, P1
[7]  
Grbner W., 1965, ARCH MATH, V16, P257, DOI DOI 10.1007/BF01220031
[8]  
HARSHORNE R, 1966, LECTURE NOTES MATH, V20
[9]  
Herzog J., 1971, LECTURE NOTES MATH, V238