A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces

被引:1
作者
Yatakoat, Pornsak [1 ]
机构
[1] Nakhon Phanom Univ, Fac Sci, Div Math, Nakhon Phanom 48000, Thailand
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2018年 / 9卷 / 01期
关键词
nonexpansive non-self mappings; common fixed points; Banach spaces;
D O I
10.22075/ijnaa.2018.1596.1416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 13 条
[1]  
Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P61
[2]  
Agarwal RP, 2009, TOPOL FIXED POINT TH, V6, P1, DOI 10.1007/978-0-387-75818-3_1
[4]   SIMPLE PROOF OF THE MEAN ERGODIC THEOREM FOR NON-LINEAR CONTRACTIONS IN BANACH-SPACES [J].
BRUCK, RE .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 32 (2-3) :107-116
[5]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150
[6]   Convergence of approximating paths to solutions of variational inequalities involving non-lipschitzian mappings [J].
Jung, Jong Soo ;
Sahu, Daya Ram .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) :377-392
[7]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510
[8]   Viscosity approximation methods for fixed-points problems [J].
Moudafi, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 241 (01) :46-55