NONSINGULAR RETRACTABLE MODULES AND THEIR ENDOMORPHISM-RINGS

被引:28
作者
KHURI, SM [1 ]
机构
[1] E CAROLINA UNIV,DEPT MATH,GREENVILLE,NC 27858
关键词
D O I
10.1017/S000497270002877X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module R(M) is said to be retractable if Hom(R) (M, U) not-equal 0 for each nonzero submodule U of M. M is said to be a CS module if every complement submodule of M is a direct summand in M. Retractable modules are compared to nondegenerate modules on the one hand and to e-retractable modules on the other (nondegenerate implies retractable implies e-retractable); and it is shown that if M is nonsingular and retractable, then End(R) M is a left CS ring if only if M is a CS module.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 7 条
[1]  
Albu T., 1984, RELATIVE FINITENESS
[2]   ENDOMORPHISM-RINGS OF MODULES OVER NON-SINGULAR CS RINGS [J].
CHATTERS, AW ;
KHURI, SM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (JUN) :434-444
[3]  
FAITH C, 1972, LECTURE NOTES MATH
[4]  
Khuri S.M., 1980, ANN SCI MATH QUE, V4, P145
[5]   CORRESPONDENCE THEOREMS FOR MODULES AND THEIR ENDOMORPHISM-RINGS [J].
KHURI, SM .
JOURNAL OF ALGEBRA, 1989, 122 (02) :380-396
[6]   BAER ENDOMORPHISM RINGS AND CLOSURE OPERATORS [J].
KHURI, SM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (05) :1070-1078
[7]  
UTUMI Y, 1963, P AM MATH SOC, V14, P141