ON THE LAPLACE TRANSFORM OF THE AGGREGATE DISCOUNTED CLAIMS WITH MARKOVIAN ARRIVALS

被引:14
作者
Ren, Jiandong [1 ]
机构
[1] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
关键词
D O I
10.1080/10920277.2008.10597510
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present an explicit formula for the Laplace transform of the distribution of the aggregate discounted claims when interclaim times follow a Markovian arrival process. In addition, we derive explicit formulas for the first two moments and then show that the higher moments may be obtained by numerically solving a system of ordinary differential equations.
引用
收藏
页码:198 / 206
页数:9
相关论文
共 16 条
[1]   CLASSICAL RISK THEORY IN AN ECONOMIC-ENVIRONMENT [J].
DELBAEN, F ;
HAEZENDONCK, J .
INSURANCE MATHEMATICS & ECONOMICS, 1987, 6 (02) :85-116
[2]  
GERBER H.U., 1971, MITTEILUNGEN VEREINI, V71, P63
[3]   DISCOUNTED CENTRAL LIMIT THEOREM AND ITS BERRY-ESSEEN ANALOGUE [J].
GERBER, HU .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01) :389-&
[4]  
Goovaerts M., 2005, SCAND ACTUAR J, V6, P446, DOI DOI 10.1080/03461230500361943
[5]   Martingale approach for moments of discounted aggregate claims [J].
Jang, JW .
JOURNAL OF RISK AND INSURANCE, 2004, 71 (02) :201-211
[6]   Moments of claims in a Markovian environment [J].
Kim, Bara ;
Kim, Hwa-Sung .
INSURANCE MATHEMATICS & ECONOMICS, 2007, 40 (03) :485-497
[7]  
Latouche G., 1999, MARKOVIAN POINT PROC
[8]   Moments of compound renewal sums with discounted claims [J].
Léveillé, G ;
Garrido, J .
INSURANCE MATHEMATICS & ECONOMICS, 2001, 28 (02) :217-231
[9]  
Leveille G., 2001, SCAND ACTUAR J, V2, P98, DOI [10.1080/03461230152592755, DOI 10.1080/03461230152592755]
[10]   VERSATILE MARKOVIAN POINT PROCESS [J].
NEUTS, MF .
JOURNAL OF APPLIED PROBABILITY, 1979, 16 (04) :764-779