ON THE COSET STRUCTURE OF A SKEW LATTICE

被引:0
作者
Costa, Joao Pita [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
关键词
noncommutative lattice; skew lattice; band of semigroups; Green's relations; coset structure; regularity; symmetry; categoricity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The class of skew lattices can be seen as an algebraic category. It models an algebraic theory in the category of sets where the Green's relation D is a congruence describing an adjunction to the category of lattices. In this paper we will discuss the relevance of this approach, revisit some known decompositions and relate the order structure of a skew lattice with its coset structure that describes the internal coset decomposition of the respective skew lattice.
引用
收藏
页码:673 / 692
页数:20
相关论文
共 50 条
  • [31] On strongly symmetric skew lattices
    Karin Cvetko-Vah
    Algebra universalis, 2011, 66
  • [32] Pure skew lattices in rings
    Cvetko-Vah, K
    SEMIGROUP FORUM, 2004, 68 (02) : 268 - 279
  • [33] Pure Skew Lattices in Rings
    Karin Cvetko-Vah
    Semigroup Forum, 2004, 68 : 268 - 279
  • [34] Coset vertex operator algebras and W-algebras of A-type
    Arakawa, Tomoyuki
    Jiang, Cuipo
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (02) : 191 - 206
  • [35] Schramm-Loewner evolution martingales in coset conformal field theory
    Nazarov, A.
    JETP LETTERS, 2012, 96 (02) : 90 - 93
  • [36] Algebraic properties of CFT coset construction and Schramm-Loewner evolution
    Nazarov, A. A.
    7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [37] Quantum dimensions and irreducible modules of some diagonal coset vertex operator algebras
    Lin, Xingjun
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (06) : 1363 - 1380
  • [38] Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure
    Hongler, Clement
    Kytola, Kalle
    Viklund, Fredrik
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 395 (01) : 1 - 58
  • [39] Skew lattices and binary operations on functions
    Cvetko-Vah, Karin
    Leech, Jonathan
    Spinks, Matthew
    JOURNAL OF APPLIED LOGIC, 2013, 11 (03) : 253 - 265
  • [40] Two-channel QMF bank without checkerboard effect and its lattice structure
    Harada, Y
    Muramatsu, S
    Kiya, H
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1999, 82 (11): : 74 - 85