A triangular finite element with new approximation properties

被引:0
|
作者
Baidakova, N., V
机构
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2015年 / 21卷 / 04期
关键词
multidimensional interpolation; finite element method; maximum angle condition; splines on triangulations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite element with new properties of approximation of higher derivatives is constructed, and a method for the construction of a finite element space in the planar case is proposed. The method is based on Yu.N. Subbotin's earlier results as well as on the results obtained in this paper. The resulting piecewise polynomial function possesses the continuity property and new approximation properties.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 50 条
  • [1] A triangular finite element with new approximation properties
    N. V. Baidakova
    Proceedings of the Steklov Institute of Mathematics, 2017, 296 : 74 - 84
  • [2] A Triangular Finite Element with New Approximation Properties
    Baidakova, N. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) : S74 - S84
  • [3] A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal
    Angeles Maslucan, Romy
    Dominguez, John Alexis
    MATERIALS, 2022, 15 (10)
  • [4] Nodal finite element approximation of peridynamics
    Jha, Prashant K.
    Diehl, Patrick
    Lipton, Robert
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [5] Finite element approximation for TV regularization
    Yao, Chang Hui
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2008, 5 (03) : 516 - 526
  • [6] FINITE ELEMENT APPROXIMATION OF THE p(.)-LAPLACIAN
    Breit, Dominic
    Diening, Lars
    Schwarzacher, Sebastian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 551 - 572
  • [7] Finite Element Approximation of the Hardy Constant
    Della Pietra, Francesco
    Fantuzzi, Giovanni
    Ignat, Liviu I.
    Masiello, Alba Lia
    Paoli, Gloria
    Zuazua, Enrique
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (02) : 497 - 523
  • [8] Finite element approximation of the Einstein tensor
    Gawlik, Evan S.
    Neunteufel, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025,
  • [9] A new fully discrete finite difference/element approximation for fractional cable equation
    Liu J.
    Li H.
    Liu Y.
    Li, Hong (smslh@imu.edu.cn), 2016, Springer Verlag (52) : 345 - 361
  • [10] Cableway triangular tower stress finite element analysis
    Gong, J. C. (jcgong@gmail.com), 1600, Sila Science, University Mah Mekan Sok, No 24, Trabzon, Turkey (31):