THE VOLUME OF HYPERBOLIC COXETER POLYTOPES OF EVEN DIMENSION

被引:11
作者
HECKMAN, GJ [1 ]
机构
[1] CATHOLIC UNIV NIJMEGEN,DEPT MATH,6525 ED NIJMEGEN,NETHERLANDS
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1995年 / 6卷 / 02期
关键词
D O I
10.1016/0019-3577(95)91242-N
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:189 / 196
页数:8
相关论文
共 21 条
[1]   The Gauss-Bonnet theorem for Riemannian polyhedra [J].
Allendoerfer, Carl B. ;
Weil, Andre .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 53 (1-3) :101-129
[2]  
[Anonymous], 1984, GEOMETRIAE DEDICATA, DOI 10.1007/BF00146825
[3]  
Bohm J., 1981, POLYEDERGEOMETRIE N
[4]   A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds [J].
Chern, SS .
ANNALS OF MATHEMATICS, 1944, 45 :747-752
[5]  
Coxeter H. S. M., 1935, Q J MATH, V6, P13, DOI 10.1093/qmath/os-6.1.13
[6]  
Fenchel W., 1940, J LONDON MATH SOC, V15, P15, DOI DOI 10.1112/JLMS/S1-15.1.15
[7]   GROWTH FUNCTIONS ON FUCHSIAN-GROUPS AND THE EULER CHARACTERISTIC [J].
FLOYD, WJ ;
PLOTNICK, SP .
INVENTIONES MATHEMATICAE, 1987, 88 (01) :1-29
[8]  
HOF IM, 1985, EXPO MATH, V3, P179
[9]  
Hopf H., 1925, NACHR GES WISS GO MP, P131
[10]  
Humphreys J. E., 1990, CAMBRIDGE STUDIES AD, V29, DOI DOI 10.1017/CBO9780511623646