LOCAL AND GLOBAL BIFURCATION FOR SOME NONLINEARIZABLE EIGENVALUE PROBLEMS

被引:0
作者
Mamedova, Gunay M. [1 ]
机构
[1] Baku State Univ, AZ-1148 Baku, Azerbaijan
来源
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS | 2014年 / 40卷 / 02期
关键词
bifurcation point; global bifurcation; simple eigenvalue; eigenfunction; continuum of solutions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the structure of the set of solutions for a wide class of nonlinear eigenvalue problems in Banach space with non differentiable by Frechet nonlinearities. We give a generalization of the classical theorem on the global bifurcation of the eigenvalues of odd multiplicity and prove the existence of global continua bifurcating from intervals of the line of trivial solutions.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 10 条
[1]  
Chiappinelli R., 1989, COMMENTATIONES MATH, V30, P235
[2]   STRUCTURE OF SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J].
DANCER, EN .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (11) :1069-1076
[3]  
Gaines R.E., 1977, COINCIDENCE DEGREE N, DOI [10.1007/BFb0089537, DOI 10.1007/BFB0089537]
[4]  
Krasnoselskii M.A., 1974, TOPOLOGICAL METHODS
[5]  
Levitan B. M., 1975, TRANSLATION MATH MON, V39
[6]  
Makhmudov A. P., SOVIET MATH, V34
[7]  
MAKHMUDOV AP, 1989, DIFF EQUAT+, V25, P71
[8]  
Przybycin J., 2004, OPUSCULA MATH, V24, P1211
[9]  
Rabinowitz P. H., 1971, J FUNCT ANAL, V7, P487, DOI [DOI 10.1016/0022-1236(71)90030-9, 10.1016/0022-1236(71)90030-9]
[10]   EIGENVALUE PROBLEMS FOR NONDIFFERENTIABLE MAPPINGS [J].
SCHMITT, K ;
SMITH, HL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (03) :294-319