TRANSITION TO TURBULENCE IN A DISCRETE GINZBURG-LANDAU MODEL

被引:32
作者
BOHR, T [1 ]
PEDERSEN, AW [1 ]
JENSEN, MH [1 ]
机构
[1] NORDITA, DK-2100 COPENHAGEN, DENMARK
来源
PHYSICAL REVIEW A | 1990年 / 42卷 / 06期
关键词
D O I
10.1103/PhysRevA.42.3626
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a numerical study of the onset of turbulence in a discretized version of the complex Ginzburg-Landau equation. The transition point is determined by computing Lyapunov exponents, which show a first-order transition at a parameter value 1 below the linear stability threshold for the uniform state. On further decreasing the parameter, the finite-time Lyapunov exponent remains positive only up to a characteristic transient time, after which the vortices get entangled and the asymptotic Lyapunov exponents become zero. The finite-time exponent goes to zero at c<1 as a power law. © 1990 The American Physical Society.
引用
收藏
页码:3626 / 3629
页数:4
相关论文
共 19 条
[1]  
[Anonymous], PHASE TRANSITIONS CR
[2]  
[Anonymous], SOV PHYS USP
[3]  
BODENSCHATZ E, 1989, THESIS U BAYREUTH
[4]  
BOHR T, 1990, IN PRESS P C NONLINE
[5]  
BOHR T, 1990, NEW TRENDS NONLINEAR
[6]   BENJAMIN-FEIR TURBULENCE IN CONVECTIVE BINARY FLUID MIXTURES [J].
BRAND, HR ;
LOMDAHL, PS ;
NEWELL, AC .
PHYSICA D, 1986, 23 (1-3) :345-361
[7]   DEFECT-MEDIATED TURBULENCE [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (14) :1619-1622
[8]  
ELPHICK C, UNPUB
[9]  
GAPONOVGREKHOV AV, UNPUB
[10]  
KOSTERLITZ JM, 1982, NONLINEAR PHENOMENA, P397