3-Hitting set on bounded degree hypergraphs: Upper and lower bounds on the kernel size

被引:0
作者
Kanj, Iyad [1 ]
Zhang, Fenghui [2 ]
机构
[1] Depaul Univ, Sch Comp, 243 S Wabash Ave, Chicago, IL 60604 USA
[2] Google Kirkland, Kirkland, WA 98033 USA
关键词
Hitting set; kernel; upper bounds; lower bounds; parameterized complexity;
D O I
10.1142/S1793830915500111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study upper and lower bounds on the vertex-kernel size for the 3-hitting set problem on hypergraphs of degree at most 3, denoted 3-3-hs. We first show that, unless P = NP, 3-3-hs on 3-uniform hypergraphs does not have a vertex-kernel of size at most 35k/19 > 1.8421k. We then give a 4k - k(0.2692) vertex-kernel for 3-3-hs that is computable in time O(k(2)). We do not assume that the hypergraph is 3-uniform for the vertex-kernel upper bound results. This result improves the upper bound of 4k on the vertex-kernel size for 3-3-hs, implied by the results of Wahlstrom.
引用
收藏
页数:17
相关论文
共 22 条
[1]   A kernelization algorithm for d-Hitting Set [J].
Abu-Khzam, Faisal N. .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2010, 76 (07) :524-531
[2]  
Ausiello G., 1999, COMPLEXITY APPROXIMA
[3]   Kernel(s) for Problems with no Kernel: On Out-Trees with Many Leaves [J].
Binkele-Raible, Daniel ;
Fernau, Henning ;
Fomin, Fedor V. ;
Lokshtanov, Daniel ;
Saurabh, Saket ;
Villanger, Yngve .
ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (04)
[4]   On problems without polynomial kernels [J].
Bodlaender, Hans L. ;
Downey, Rodney G. ;
Fellows, Michael R. ;
Hermelin, Danny .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2009, 75 (08) :423-434
[5]   IMPROVED LOWER BOUNDS ON K-INDEPENDENCE [J].
CARO, Y ;
TUZA, Z .
JOURNAL OF GRAPH THEORY, 1991, 15 (01) :99-107
[6]   Vertex Cover: Further observations and further improvements [J].
Chen, J ;
Kanj, IA ;
Jia, WJ .
JOURNAL OF ALGORITHMS, 2001, 41 (02) :280-301
[7]   Parametric duality and kernelization: Lower bounds and upper bounds on kernel size [J].
Chen, Jianer ;
Fernau, Henning ;
Kanj, Iyad A. ;
Xia, Ge .
SIAM JOURNAL ON COMPUTING, 2007, 37 (04) :1077-1106
[8]   Improved upper bounds for vertex cover [J].
Chen, Jianer ;
Kanj, Iyad A. ;
Xia, Ge .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (40-42) :3736-3756
[9]   Labeled search trees and amortized analysis: Improved upper bounds for NP-hard problems [J].
Chen, JN ;
Kanj, IA ;
Xia, G .
ALGORITHMICA, 2005, 43 (04) :245-273
[10]  
Dell H, 2010, ACM S THEORY COMPUT, P251