A survey on bivariate Lagrange interpolation on Lissajous nodes

被引:0
|
作者
Erb, Wolfgang [1 ]
Kaethner, Christian [2 ]
Dencker, Peter [1 ]
Ahlborg, Mandy [2 ]
机构
[1] Med Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[2] Med Univ Lubeck, Inst Med Engn, D-23562 Lubeck, Germany
来源
DOLOMITES RESEARCH NOTES ON APPROXIMATION | 2015年 / 8卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is a survey on recent research on bivariate polynomial interpolation on the node points of Lissajous curves. The resulting theory is a generalization of the generating curve approach developed for Lagrange interpolation on the Padua points. After classifying the different types of Lissajous curves, we give a short overview on interpolation and quadrature rules defined on the node points of the Lissajous curves. Further, we summarize some convergence results and show how the interpolating polynomials can be computed efficiently. Finally, the developed theory is applied to a practical problem from a medical imaging modality called Magnetic Particle Imaging.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 50 条
  • [1] BIVARIATE LAGRANGE INTERPOLATION AT THE CHEBYSHEV NODES
    Harris, Lawrence A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) : 4447 - 4453
  • [2] BIVARIATE LAGRANGE INTERPOLATION AT THE CHECKERBOARD NODES
    Cao, Lihua
    Ghimire, Srijana
    Wang, Xiang-Sheng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) : 2153 - 2163
  • [3] Bivariate Lagrange interpolation at the node points of Lissajous curves - the degenerate case
    Erb, Wolfgang
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 289 : 409 - 425
  • [4] Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous curves
    Erb, Wolfgang
    Kaethner, Christian
    Ahlborg, Mandy
    Buzug, Thorsten M.
    NUMERISCHE MATHEMATIK, 2016, 133 (04) : 685 - 705
  • [5] Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous curves
    Wolfgang Erb
    Christian Kaethner
    Mandy Ahlborg
    Thorsten M. Buzug
    Numerische Mathematik, 2016, 133 : 685 - 705
  • [6] A survey on lagrange interpolation based on equally spaced nodes
    Revers, M
    ADVANCED PROBLEMS IN CONSTRUCTIVE APPROXIMATION, 2003, 142 : 153 - 163
  • [7] BOOLEAN BIVARIATE LAGRANGE INTERPOLATION
    DELVOS, FJ
    POSDORF, H
    COMPUTING, 1979, 22 (04) : 311 - 323
  • [8] Alternation points and bivariate Lagrange interpolation
    Harris, Lawrence A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 43 - 52
  • [9] LAGRANGE AND HERMITE INTERPOLATION BY BIVARIATE SPLINES
    NURNBERGER, G
    RIESSINGER, T
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1992, 13 (1-2) : 75 - 96
  • [10] ON LAGRANGE INTERPOLATION WITH EQUIDISTANT NODES
    BYRNE, GJ
    MILLS, TM
    SMITH, SJ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 42 (01) : 81 - 89