ON AGGREGATION OF T-TRANSITIVE FUZZY BINARY RELATIONS

被引:16
作者
FODOR, JC
OVCHINNIKOV, S
机构
[1] UNIV AGR SCI, DEPT MATH, GODOLLO, HUNGARY
[2] SAN FRANCISCO STATE UNIV, DEPT MATH, SAN FRANCISCO, CA 94132 USA
基金
匈牙利科学研究基金会;
关键词
WEAK ORDERS; QUASI-ORDERS; QUASI-TRANSITIVE RELATIONS; PARETO PRINCIPLE;
D O I
10.1016/0165-0114(94)00346-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper is concerned with the theory of weak orders, quasi orders, and quasi-transitive relations in the framework of group choice in a fuzzy environment. We characterize completely two extreme cases of group choice rules satisfying the Pareto principle. In particular, we prove that a fuzzy binary relation is a fuzzy quasi order if and only if it is an intersection of fuzzy weak orders. In addition, it is a fuzzy quasi-transitive relation if and only if it is a union of fuzzy weak orders.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 17 条
[1]   SYNTHESIZING JUDGMENTS - A FUNCTIONAL-EQUATIONS APPROACH [J].
ACZEL, J ;
ALSINA, C .
MATHEMATICAL MODELLING, 1987, 9 (3-5) :311-320
[2]  
ALSINA C, IN PRESS J ARTIFICIA
[3]   FUZZY-SETS IN APPROXIMATE REASONING .1. INFERENCE WITH POSSIBILITY DISTRIBUTIONS [J].
DUBOIS, D ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1991, 40 (01) :143-202
[4]  
Fishburn P. C., 1985, INTERVAL ORDERS INTE
[5]  
FODOR J, 1992, FUZZY LOGIC STATE AR
[6]  
FODOR J, 1991, FUZZY SETS SYSTEMS, V41, P293
[7]   TRACES OF FUZZY BINARY RELATIONS [J].
FODOR, JC .
FUZZY SETS AND SYSTEMS, 1992, 50 (03) :331-341
[8]  
Mirkin B., 1979, GROUP CHOICE
[9]  
OVCHINNIKOV S, 1992, P IEEE INT C FUZZY S, P1245
[10]  
Ovchinnikov S. V., 1990, MULTIPERSON DECISION, P143