CENTRAL SETS IN COMMUTATIVE SEMIGROUPS AND PARTITION REGULARITY OF SYSTEMS OF LINEAR-EQUATIONS

被引:4
作者
HINDMAN, N
WOAN, WJ
机构
[1] Department of Mathematics, Howard University, Washington
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0025579300006963
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a commutative semigroup (S, +) with identity 0 and u x v matrices A and B with nonnegative integers as entries, we show that if C = A - B satisfies Rado's columns condition over Z, then any central set in S contains solutions to the system of equations Ax half arrow pointing right = Bx half arrow pointing right. In particular, the system of equations Ax half arrow pointing right = Bx half arrow pointing right is then partition regular. Restricting our attention to the multiplicative semigroup of positive integers (so that coefficients become exponents) we show that the columns condition over Z is also necessary for the existence of solutions in any central set (while the distinct notion of the columns condition over Q is necessary and sufficient for partition regularity over N\{1}).
引用
收藏
页码:169 / 186
页数:18
相关论文
共 15 条
[1]   RAMSEY THEORY IN NONCOMMUTATIVE SEMIGROUPS [J].
BERGELSON, V ;
HINDMAN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (01) :433-446
[2]   NONMETRIZABLE TOPOLOGICAL DYNAMICS AND RAMSEY THEORY [J].
BERGELSON, V ;
HINDMAN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (01) :293-320
[3]  
BERGELSON V, IN PRESS J COMB TH A
[4]  
Berglund J. F., 1989, ANAL SEMIGROUPS
[5]  
Curtis C.W., 1962, REPRESENTATION THEOR
[6]   PARTITIONS AND LINEAR EQUATION SYSTEMS [J].
DEUBER, W .
MATHEMATISCHE ZEITSCHRIFT, 1973, 133 (02) :109-123
[7]  
ELLIS R, 1969, LECTURES TOPOLOGICAL
[8]  
Furstenberg H., 1981, RECURRENCE ERGODIC T
[9]   DIVISIBLE PROPERTIES AND THE STONE-CECH COMPACTIFICATION [J].
GLASNER, S .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (04) :993-1007
[10]  
Graham R. L., 1990, RAMSEY THEORY