STABILITY ANALYSIS OF RUNGE-KUTTA METHODS FOR VOLTERRA INTEGRAL-EQUATIONS OF THE 2ND KIND

被引:44
作者
BELLEN, A
JACKIEWICZ, Z
VERMIGLIO, R
ZENNARO, M
机构
[1] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85287
[2] UNIV UDINE,DIPARTIMENTO MATEMAT & INFORMAT,I-33100 UDINE,ITALY
基金
美国国家科学基金会;
关键词
D O I
10.1093/imanum/10.1.103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stability analysis of Volterra-Runge-Kutta methods based on the basic test equation of the form. y(t)=1+λ∫0ty(s) ds (t≥0),where λ is a complex parameter, and on the convolution test equation. y(t)=1+∫0t[λ+σ(t-s)]y(s)ds (t≥0),where λ and σ are real parameters, is presented. General stability conditions are derived and applied to construct numerical methods with good stability properties. In particular, a family of second-order Vo-stable Volterra-Runge-Kutta methods is obtained. No Vo-stable methods of order greater than one have been presented previously in the literature. © 1989 Oxford University Press.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 17 条
[1]   STABILITY ANALYSIS OF METHODS EMPLOYING REDUCIBLE RULES FOR VOLTERRA INTEGRAL-EQUATIONS [J].
AMINI, S .
BIT, 1983, 23 (03) :322-328
[2]  
Baker C. T. H., 1978, ACM Transactions on Mathematical Software, V4, P305, DOI 10.1145/356502.356476
[3]   STABILITY ANALYSIS OF RUNGE-KUTTA METHODS APPLIED TO A BASIC VOLTERRA INTEGRAL-EQUATION [J].
BAKER, CTH ;
WILKINSON, JC .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1981, 22 :515-538
[4]   STABILITY REGIONS IN NUMERICAL TREATMENT OF VOLTERRA INTEGRAL-EQUATIONS [J].
BAKER, CTH ;
KEECH, MS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :394-417
[5]  
BAKER CTH, 1985, INT SER NUMER MATH, V73, P53
[6]  
BELLEN A, 1989, MATH COMPUT, V52, P49, DOI 10.1090/S0025-5718-1989-0971402-3
[7]  
Brunner H., 1986, NUMERICAL SOLUTION V
[8]  
BRUNNER H, 1980, NW8480 MATH CENTR RE
[9]  
Brunner H., 1982, J COMPUT APPL MATH, V8, P213, DOI [10.1016/0771-050X(82)90044-4, DOI 10.1016/0771-050X(82)90044-4]
[10]  
Lambert J.D, 1973, COMPUTATIONAL METHOD