ATTRACTOR RECONSTRUCTION FROM FILTERED CHAOTIC TIME-SERIES

被引:30
|
作者
CHENNAOUI, A
PAWELZIK, K
LIEBERT, W
SCHUSTER, HG
PFISTER, G
机构
[1] UNIV KIEL, INST THEORET PHYS, W-2300 KIEL 1, GERMANY
[2] UNIV KIEL, INST ANGEW PHYS, W-2300 KIEL 1, GERMANY
[3] UNIV KIEL STERNWARTE, W-2300 KIEL, GERMANY
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 08期
关键词
D O I
10.1103/PhysRevA.41.4151
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a method that allows one to decide whether an apparently chaotic time series has been filtered or not. For the case of a filtered time series we show that the parameters of the unknown filter can be extracted from the time series, and thereby we are able to reconstruct the original time series. It is demonstrated that our method works and provides reliable values of the fractal dimensions for systems that are described by maps or differential equations and for real experimental data. © 1990 The American Physical Society.
引用
收藏
页码:4151 / 4159
页数:9
相关论文
共 50 条
  • [21] ESTIMATION OF THE NUMBER OF DEGREES OF FREEDOM FROM CHAOTIC TIME-SERIES
    CENYS, A
    PYRAGAS, K
    PHYSICS LETTERS A, 1988, 129 (04) : 227 - 230
  • [22] MODELING AND SYNCHRONIZING CHAOTIC SYSTEMS FROM TIME-SERIES DATA
    BROWN, R
    RULKOV, NF
    TRACY, ER
    PHYSICAL REVIEW E, 1994, 49 (05) : 3784 - 3800
  • [23] Reduced Fractal analysis of the multidimensional attractor reconstructed from chaotic time series
    Dailyudenko, VF
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 1, PROCEEDINGS, 2003, 2667 : 921 - 926
  • [24] STOCHASTIC VERSIONS OF CHAOTIC TIME-SERIES - GENERALIZED LOGISTIC AND HENON TIME-SERIES MODELS
    GERR, NL
    ALLEN, JC
    PHYSICA D, 1993, 68 (02): : 232 - 249
  • [25] RECONSTRUCTION OF THE DYNAMICAL SYSTEM STRUCTURE FROM TIME-SERIES
    GRIBKOV, DA
    GRIBKOVA, VV
    KRAVTSOV, YA
    KUZNETSOV, YI
    RZHANOV, AG
    RADIOTEKHNIKA I ELEKTRONIKA, 1994, 39 (02): : 269 - 277
  • [26] PREDICTING CHAOTIC TIME-SERIES WITH WAVELET NETWORKS
    CAO, LY
    HONG, YG
    FANG, HP
    HE, GW
    PHYSICA D, 1995, 85 (1-2): : 225 - 238
  • [27] A METHOD FOR PREDICTING CHAOTIC TIME-SERIES WITH OUTLIERS
    ITOH, K
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1995, 78 (05): : 44 - 53
  • [28] ESTIMATING DIMENSION IN NOISY CHAOTIC TIME-SERIES
    SMITH, RL
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1992, 54 (02): : 329 - 351
  • [29] Filtering of nonlinear chaotic time-series with noise
    Salapaka, S
    Dahleh, M
    Giarre, L
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1669 - 1671
  • [30] AN OPTIMAL METRIC FOR PREDICTING CHAOTIC TIME-SERIES
    TANAKA, N
    OKAMOTO, H
    NAITO, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1995, 34 (01): : 388 - 394