ATTRACTOR RECONSTRUCTION FROM FILTERED CHAOTIC TIME-SERIES

被引:30
|
作者
CHENNAOUI, A
PAWELZIK, K
LIEBERT, W
SCHUSTER, HG
PFISTER, G
机构
[1] UNIV KIEL, INST THEORET PHYS, W-2300 KIEL 1, GERMANY
[2] UNIV KIEL, INST ANGEW PHYS, W-2300 KIEL 1, GERMANY
[3] UNIV KIEL STERNWARTE, W-2300 KIEL, GERMANY
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 08期
关键词
D O I
10.1103/PhysRevA.41.4151
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a method that allows one to decide whether an apparently chaotic time series has been filtered or not. For the case of a filtered time series we show that the parameters of the unknown filter can be extracted from the time series, and thereby we are able to reconstruct the original time series. It is demonstrated that our method works and provides reliable values of the fractal dimensions for systems that are described by maps or differential equations and for real experimental data. © 1990 The American Physical Society.
引用
收藏
页码:4151 / 4159
页数:9
相关论文
共 50 条
  • [11] MODEL-EQUATIONS FROM A CHAOTIC TIME-SERIES
    AGARWAL, AK
    AHALPARA, DP
    KAW, PK
    PRABHAKARA, HR
    SEN, A
    PRAMANA-JOURNAL OF PHYSICS, 1990, 35 (03): : 287 - 301
  • [12] PREDICTION OF CHAOTIC TIME-SERIES WITH NOISE
    IKEGUCHI, T
    AIHARA, K
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1995, E78A (10) : 1291 - 1298
  • [13] NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES
    CASDAGLI, M
    PHYSICA D, 1989, 35 (03): : 335 - 356
  • [14] The analysis of chaotic time-series data
    Kostelich, EJ
    SYSTEMS & CONTROL LETTERS, 1997, 31 (05) : 313 - 319
  • [15] The analysis of chaotic time-series data
    Department of Mathematics, Arizona State University, Tempe, AZ 85287, United States
    Syst Control Lett, 5 (313-319):
  • [16] RECURSIVE PREDICTION OF CHAOTIC TIME-SERIES
    STARK, J
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 197 - 223
  • [17] FORECASTING ON CHAOTIC TIME-SERIES - A LOCAL OPTIMAL LINEAR-RECONSTRUCTION METHOD
    JIMENEZ, J
    MORENO, JA
    RUGGERI, GJ
    PHYSICAL REVIEW A, 1992, 45 (06): : 3553 - 3558
  • [18] TIME-SERIES ANALYSIS OF CHAOTIC SIGNALS
    RABINOVITCH, A
    THIEBERGER, R
    PHYSICA D, 1987, 28 (03): : 409 - 415
  • [19] DELAY RECOGNITION IN CHAOTIC TIME-SERIES
    FOWLER, AC
    KEMBER, G
    PHYSICS LETTERS A, 1993, 175 (06) : 402 - 408
  • [20] ATTRACTOR DIMENSION, ENTROPY AND MODELING OF SPEECH TIME-SERIES
    KUMAR, A
    MULLICK, SK
    ELECTRONICS LETTERS, 1990, 26 (21) : 1790 - 1792