STABILITY OF THE JENSEN TYPE FUNCTIONAL EQUATION IN BANACH ALGEBRAS: A FIXED POINT APPROACH

被引:0
作者
Park, Choonkil [1 ]
Park, Won-Gil [2 ]
Lee, Jung Rye [3 ]
Rassias, Themistocles M. [4 ]
机构
[1] Hanyang Univ, Dept Math, Seoul 133791, South Korea
[2] Mokwon Univ, Dept Math Educ, Daejeon 302729, South Korea
[3] Daejin Univ, Dept Math, Kyeonggi 487711, South Korea
[4] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
来源
KOREAN JOURNAL OF MATHEMATICS | 2011年 / 19卷 / 02期
基金
新加坡国家研究基金会;
关键词
Jensen type functional equation; fixed point; homomorphism in Banach algebra; generalized Hyers-Ulam stability; derivation on Banach algebra;
D O I
10.11568/kjm.2011.19.2.149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using fixed point methods, we prove the generalized Hyers-Ulam stability of homomorphisms in Banach algebras and of derivations on Banach algebras for the following Jensen type functional equation: f(x + y/2) + f (x - y/2) = f(x).
引用
收藏
页码:149 / 161
页数:13
相关论文
共 30 条
[1]   Generalized additive mapping in Banach modules and isomorphisms between C*-algebras [J].
Baak, C ;
Boo, DH ;
Rassias, TM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (01) :150-161
[2]   Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces [J].
Baak, Choonkil .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) :1789-1796
[3]  
Cadariu L., 2003, JIPAM J INEQUAL PURE, V4
[4]  
Cholewa P.W., 1984, AEQUATIONES MATH, V27, P76
[5]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[6]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&
[7]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[8]  
Hyers D.H., 1997, TOPICS NONLINEAR ANA
[9]  
Hyers D. H., 1992, AEQUATIONES MATH, V44, P125, DOI [10.1007/BF01830975, DOI 10.1007/BF01830975]
[10]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224