Analysis of iterative methods in PageRank computation

被引:1
作者
Srivastava, Atul Kumar [1 ]
Garg, Rakhi [2 ]
Mishra, P. K. [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, Mahila Maha Vidyalaya, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India
关键词
PageRank method; Iterative methods; Extrapolation methods; Large and Sparse linear system; Web search engine;
D O I
10.1080/02522667.2017.1372914
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
PageRank is one of the basic metric used in web search technology to rank the web pages. It uses power method to compute principal eigenvector of the web matrix of several billion nodes. PageRank method incorporates a parameter called damping factor that plays a major role in PageRank computation. In this study, we have observed experimentally the efficiency of various iterative methods on hyperlink graph for different value of . We conclude from experiment that Power method is effective and more competitive for the well condition problem i.e. small value of . However, for 1 Power method becomes more complex, and other methods such as Aitken-Power, SOR, and Gauss-Seidel are more efficient than it in respect of CPU time as well as the number of iteration needed for convergence.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 50 条
  • [41] Iterative methods for generalized variational inequalities
    Noor, MA
    APPLIED MATHEMATICS LETTERS, 2002, 15 (01) : 77 - 82
  • [42] A class of quadratically convergent iterative methods
    Stanimirovic, Predrag S.
    Katsikis, Vasilios N.
    Srivastava, Shwetabh
    Pappas, Dimitrios
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3125 - 3146
  • [43] A class of quadratically convergent iterative methods
    Predrag S. Stanimirović
    Vasilios N. Katsikis
    Shwetabh Srivastava
    Dimitrios Pappas
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3125 - 3146
  • [44] Iterative methods for nonlocal elasticity problems
    Romano, Giovanni
    Barretta, Raffaele
    Diaco, Marina
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2019, 31 (03) : 669 - 689
  • [45] Iterative methods for nonlocal elasticity problems
    Giovanni Romano
    Raffaele Barretta
    Marina Diaco
    Continuum Mechanics and Thermodynamics, 2019, 31 : 669 - 689
  • [46] Optimal Eighth Order Iterative Methods
    Khattri S.K.
    Mathematics in Computer Science, 2011, 5 (2) : 237 - 243
  • [47] Acceleration procedures for matrix iterative methods
    C. Brezinski
    Numerical Algorithms, 2000, 25 : 63 - 73
  • [48] On the problem of starting points for iterative methods
    Ştefan Măruşter
    Laura Măruşter
    Numerical Algorithms, 2019, 81 : 1149 - 1155
  • [49] Numerical iterative methods and repetitive processes
    Rudolf Rabenstein
    Peter Steffen
    Multidimensional Systems and Signal Processing, 2012, 23 : 163 - 183
  • [50] Two-sweep iterative methods
    Cvetkovic, L
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) : 25 - 30