EQUILIBRIUM THEORY OF A PARTIALLY IONIZED PLASMA

被引:21
作者
JACKSON, JL
KLEIN, LS
机构
[1] Physics Department, Howard University, Washington
来源
PHYSICAL REVIEW | 1969年 / 177卷 / 01期
关键词
D O I
10.1103/PhysRev.177.352
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A detailed study is made of the use of the Debye potential as the effective interaction between the electron and proton of a hydrogen atom in a partially ionized plasma. The chemical potentials of the constituents are calculated and examined in the light of the requirement that they be consistent with a single free-energy function. On this basis a Saha equation is derived which is consistent and correct up to terms of the order of the Debye-Hückel energy. It is further shown that the next order, obtained by expanding the effective potential in powers of the Bohr radius divided by the Debye length, is incorrect. © 1969 The American Physical Society.
引用
收藏
页码:352 / &
相关论文
共 23 条
[1]   GIANT CLUSTER EXPANSION THEORY AND ITS APPLICATION TO HIGH TEMPERATURE PLASMA [J].
ABE, R .
PROGRESS OF THEORETICAL PHYSICS, 1959, 22 (02) :213-226
[2]   The thermal ionisation of gases and its underlying elemental processes [J].
Becker, R .
ZEITSCHRIFT FUR PHYSIK, 1923, 18 :325-343
[3]   EXCHANGE AND DIRECT SECOND VIRIAL COEFFICIENTS FOR HARD SPHERES [J].
BOYD, ME ;
LARSEN, SY ;
KILPATRICK, JE .
JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (02) :499-+
[4]   DIE EFFEKTIVE IONISIERUNGSENERGIE DER ATOME EINES PLASMAS UND DER BEITRAG DER HOCHSTEN ATOMTERME ZUR KONTINUIERLICHEN EMISSION [J].
BRUNNER, J .
ZEITSCHRIFT FUR PHYSIK, 1960, 159 (03) :288-310
[5]  
DUCLOS P, 1961, Z NATURFORSCH A, V16, P711
[6]   LOWERING OF THE IONIZATION ENERGY FOR A PLASMA IN THERMODYNAMIC EQUILIBRIUM [J].
ECKER, G ;
KROLL, W .
PHYSICS OF FLUIDS, 1963, 6 (01) :62-69
[7]  
ECKER G, 1956, ANN PHYS-LEIPZIG, V17, P126, DOI DOI 10.1002/ANDP.19564520210
[8]   The probability of the quantum state [J].
Fermi, E .
ZEITSCHRIFT FUR PHYSIK, 1924, 26 :54-56
[9]   Dissociation-equilibria by the method of partitions. [J].
Fowler, RH .
PHILOSOPHICAL MAGAZINE, 1923, 45 (265) :1-33
[10]  
Friedman H.L., 1962, IONIC SOLUTION THEOR