THE EFFECT OF STRUCTURAL DAMPING ON NODES FOR THE EULER-BERNOULLI BEAM - A SPECIFIC CASE-STUDY

被引:6
|
作者
GEIST, B
MCLAUGHLIN, JR
机构
[1] Department of Mathematical Sciences, Rensselaer Polytechnic Institute Troy
[2] Department of Mathematical Sciences, Rensselaer Polytechnic Institute Troy
基金
美国国家科学基金会;
关键词
D O I
10.1016/0893-9659(94)90112-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine a uniform beam hinged at both ends and driven at its center by a harmonic forcing function. We show that at forcing frequencies corresponding to the beam's first five odd natural frequencies, the addition of Kelvin-Voigt type structural damping to the standard Euler-Bernoulli beam model has little effect on the predicted location of points of least vibration during steady state resonant excitation.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [21] Enforcing Nodes to Suppress Vibration Along a Harmonically Forced Damped Euler-Bernoulli Beam
    Cha, Philip D.
    Rinker, Jennifer M.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2012, 134 (05):
  • [22] Vibrations of an Euler-Bernoulli beam with hysteretic damping arising from dispersed frictional microcracks
    Maiti, Soumyabrata
    Bandyopadhyay, Ritwik
    Chatterjee, Anindya
    JOURNAL OF SOUND AND VIBRATION, 2018, 412 : 287 - 308
  • [23] A Numerical Method of the Euler-Bernoulli Beam with Optimal Local Kelvin-Voigt Damping
    Yu, Xin
    Ren, Zhigang
    Zhang, Qian
    Xu, Chao
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [24] Stability of Euler-Bernoulli beam equation on a star-shaped network with indefinite damping
    Bouallagui, Zied
    Jellouli, Mohamed
    APPLICABLE ANALYSIS, 2025,
  • [25] A self-sensing active constrained layer damping treatment for a Euler-Bernoulli beam
    Yellin, JM
    Shen, IY
    SMART MATERIALS & STRUCTURES, 1996, 5 (05): : 628 - 637
  • [26] Alleviating vibrations along a harmonically driven nonuniform Euler-Bernoulli beam by imposing nodes
    Baltan-Brunet, Melis
    Kopp, Fionna
    Cha, Philip D.
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2023, 3 (04): : 345 - 359
  • [27] Motion Planning for a Damped Euler-Bernoulli Beam
    Meurer, Thomas
    Schroeck, Johannes
    Kugi, Andreas
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2566 - 2571
  • [28] Free vibrations of a complex Euler-Bernoulli beam
    Popplewell, N
    Chang, DQ
    JOURNAL OF SOUND AND VIBRATION, 1996, 190 (05) : 852 - 856
  • [29] Vibration control of a rotating Euler-Bernoulli beam
    Diken, H
    JOURNAL OF SOUND AND VIBRATION, 2000, 232 (03) : 541 - 551
  • [30] Optimal vibration quenching for an Euler-Bernoulli beam
    Sloss, JM
    Bruch, JC
    Kao, CC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 239 (02) : 306 - 331