THE SPECTRAL DECOMPOSITION OF CAUCHY PROBLEM'S SOLUTION FOR LAPLACE EQUATION

被引:8
作者
Shaldanbaeva, A. A. [1 ]
Akylbayev, M., I [1 ]
Shaldanbaev, A. Sh [2 ]
Beisebaeva, A. Zh [2 ]
机构
[1] Reg Social Innovat Univ, Shymkent, Kazakhstan
[2] M Auezov South Kazakhstan State Univ, Shymkent, Kazakhstan
来源
NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL | 2018年 / 5卷 / 321期
关键词
spectrum; spectral decomposition; equation with deviating argument; Hilbert-Schmidt theorem; Cauchy Problem; Laplaceequation; incorrect; range;
D O I
10.32014/2018.2518-1726.10
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral decomposition of Cauchy problem for Laplace equation is obtained in Krein space, and is made a regularization of a problem, using the resolvent of the corresponding operator.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 18 条
[1]   Basis Properties of Eigenfunctions of Second-Order Differential Operators with Involution [J].
Kopzhassarova, Asylzat ;
Sarsenbi, Abdizhakhan .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[2]  
CHUDOV LA, 1962, DOKL AKAD NAUK SSSR+, V143, P798
[3]  
Iokhvidov J. S., 1956, P MOSCOW MATH SOC, V5, P43
[4]  
JANKE E, 1977, SPECIAL FUNCTIONS
[5]   A criterion for the strong solvability of the mixed cauchy problem for the Laplace equation [J].
Kal'menov, T. Sh. ;
Iskakova, U. A. .
DOKLADY MATHEMATICS, 2007, 75 (03) :370-373
[6]   A method for solving the Cauchy problem for the Laplace equation [J].
Kal'menov, T. Sh. ;
Iskakova, U. A. .
DOKLADY MATHEMATICS, 2008, 78 (03) :874-876
[7]   On a criterion of solvability of the inverse problem of heat conduction [J].
Kal'menov, Tynysbek S. ;
Shaldanbaev, Amir S. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2010, 18 (05) :471-492
[8]  
Kalmenov T.Sh, 2004, MATH J ALMATY, V4, P41
[9]  
Kozlov V. A. E., 1991, ZH VYCH MAT MAT FIZ, V31, P64
[10]  
Kryanev A. V., 1974, J COMPUTATIONAL MATH, V14, P25