GEOSTROPHIC TURBULENCE

被引:378
作者
RHINES, PB
机构
关键词
GEOSTROPHIC;
D O I
10.1146/annurev.fl.11.010179.002153
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The geostrophic-balance equation is a singular perturbation with respect to neglected accelerations and frictional forces. The curl of the full momentum equation is unaffected by the dominant part of the pressure force and gives a fully predictive potential vorticity equation. The derivation of the vorticity equations appropriate to a spherical planet is a length process; here the author takes them as given. The dominant small parameters are Ro, the fluid depth/planetary radius, the aspect ratio of the motion, H/L, and the ratio of Coriolis to buoyancy forces.
引用
收藏
页码:401 / 441
页数:41
相关论文
共 91 条
[1]  
BATCHELOR G, 1953, HOMOGENEOUS TURBULEN
[2]  
Batchelor G.K., 1969, PHYS FLUIDS, V12, P233, DOI DOI 10.1063/1.1692443
[3]  
BATCHELOR GK, 1959, SURVEYS MECHANICS
[4]  
BLUMEN W, 1978, J ATMOS SCI, V35, P774, DOI 10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO
[5]  
2
[6]   CRITICAL LAYER INSTABILITY IN BAROCLINIC FLOWS [J].
BRETHERT.FP .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1966, 92 (393) :325-&
[7]  
Bretherton F.P., 1971, LECT APPL MATH, V13, P61
[8]   2-DIMENSIONAL TURBULENCE ABOVE TOPOGRAPHY [J].
BRETHERTON, FP ;
HAIDVOGEL, DB .
JOURNAL OF FLUID MECHANICS, 1976, 78 (NOV5) :129-154
[9]  
Charney J. C., 1960, P S APPL MATH, V15, P289
[10]  
CHARNEY JG, 1971, J ATMOS SCI, V28, P1087, DOI 10.1175/1520-0469(1971)028<1087:GT>2.0.CO