Limit theorems for discrete-time metapopulation models

被引:35
作者
Buckley, F. M.
Pollett, P. K.
机构
基金
澳大利亚研究理事会;
关键词
D O I
10.1214/10-PS158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a class of one-dimensional chain binomial models of use in studying metapopulations (population networks). Limit theorems are established for time-inhomogeneous Markov chains that share the salient features of these models. We prove a law of large numbers, which can be used to identify an approximating deterministic trajectory, and a central limit theorem, which establishes that the scaled fluctuations about this trajectory have an approximating autoregressive structure.
引用
收藏
页码:53 / 83
页数:31
相关论文
共 67 条
[1]  
Akcakaya H., 1991, SPECIES CONSERVATION, P78
[2]   Extinction dynamics in mainland-island metapopulations:: An N-patch Stochastic model [J].
Alonso, D ;
McKane, A .
BULLETIN OF MATHEMATICAL BIOLOGY, 2002, 64 (05) :913-958
[3]  
Anderson W.J., 1991, SPRINGER SERIES STAT, DOI [10.1007/978-1-4612-3038-0, DOI 10.1007/978-1-4612-3038-0]
[4]  
Andrewartha H.G., 1954, DISTRIBUTION ABUNDAN
[5]  
[Anonymous], 1925, BIOL POPULATION GROW
[6]   Deterministic approximation of a stochastic metapopulation model [J].
Arrigoni, F .
ADVANCES IN APPLIED PROBABILITY, 2003, 35 (03) :691-720
[7]   Limits of a multi-patch SIS epidemic model [J].
Arrigoni, F ;
Pugliese, A .
JOURNAL OF MATHEMATICAL BIOLOGY, 2002, 45 (05) :419-440
[8]  
Arrigoni F., 2001, B UNIONE MATEMATICA, P387
[9]  
Asmussen S., 1983, BRANCHING PROCESSES
[10]  
Athreya K., 1997, IMA VOLUMES MATH ITS, V84