SHRINKING IN PRODUCTS OF CARDINALS AND COMPACT SPACES

被引:0
|
作者
LAZAREVIC, Z [1 ]
机构
[1] UNIV AUCKLAND,AUCKLAND,NEW ZEALAND
关键词
ORDINAL; PRODUCT; COMPACT; NORMAL; SHRINKING;
D O I
10.1016/0166-8641(94)90124-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Every normal product of a compact space with ordinal spaces is shrinking.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 50 条
  • [11] Indestructibility of compact spaces
    Dias, Rodrigo R.
    Tall, Franklin D.
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (18) : 2411 - 2426
  • [12] INTEGRAL PINCHING CHARACTERIZATION OF COMPACT SHRINKING RICCI SOLITONS
    Chu, Yawei
    Huang, Rui
    Zhou, Jundong
    COLLOQUIUM MATHEMATICUM, 2023, 173 (01) : 41 - 56
  • [13] Base multiplicity in compact and generalized compact spaces
    Balogh, Z
    Gruenhage, G
    TOPOLOGY AND ITS APPLICATIONS, 2001, 115 (02) : 139 - 151
  • [14] Locally compact, ω1-compact spaces
    Nyikos, Peter
    Zdomskyy, Lyubomyr
    ANNALS OF PURE AND APPLIED LOGIC, 2024, 175 (01)
  • [15] Products of topological spaces and families of filters
    Lipparini, Paolo
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2023, 64 (03): : 373 - 394
  • [16] Shrinking and boundedly complete Schauder frames in Frechet spaces
    Bonet, Jose
    Fernandez, Carmen
    Galbis, Antonio
    Ribera, Juan M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) : 953 - 966
  • [17] On the multiplicity of jigsawed bases in compact and countably compact spaces
    Balogh, Z
    Griesmer, J
    TOPOLOGY AND ITS APPLICATIONS, 2003, 130 (01) : 65 - 73
  • [18] ON ALMOST COUNTABLY COMPACT SPACES
    Song, Yankui
    Zhao, Hongying
    MATEMATICKI VESNIK, 2012, 64 (02): : 159 - 165
  • [19] INVERSE LIMITS OF COMPACT SPACES
    Stone, A. H.
    TOPOLOGY AND ITS APPLICATIONS, 1979, 10 (02) : 203 - 211
  • [20] THE PRODUCT OF BIRADIAL COMPACT SPACES
    ARHANGELSKII, AV
    BELLA, A
    TOPOLOGY AND ITS APPLICATIONS, 1992, 45 (02) : 157 - 162