STABLE LQG CONTROLLERS

被引:32
作者
HALEVI, Y
机构
[1] Department of Mechanical Engineering, Ohio State University, Columbus
关键词
D O I
10.1109/9.328801
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The optimal LQG controller is known to stabilize the closed loop if certain mild conditions are satisfied. The controller itself, however, may be unstable. The paper presents a method of selecting the weighting and covariance matrices such that the optimal controller is internally asymptotically stable. The method is very easy to apply and for stable open-loop system involves the solution of a single Lyapunov equation.
引用
收藏
页码:2104 / 2106
页数:3
相关论文
共 10 条
[1]   H-2-OPTIMIZATION WITH STABLE CONTROLLERS [J].
GANESH, C ;
PEARSON, JB .
AUTOMATICA, 1989, 25 (04) :629-634
[2]  
HADDAD WM, DISSIPATIVE H2 H INF
[3]   ON STABLE FULL-ORDER AND REDUCED-ORDER LQG CONTROLLERS [J].
HALEVI, Y ;
BERNSTEIN, DS ;
HADDAD, WM .
OPTIMAL CONTROL APPLICATIONS & METHODS, 1991, 12 (03) :163-172
[4]  
HALEVI Y, 1987, P ACC MINNEAPOLIS
[5]  
JACOBUS SM, 1990, P ACC SAN DIEGO
[6]  
Kwakernaak H., 1972, LINEAR OPTIMAL CONTR
[7]  
Lozano-Leal R., 1988, Proceedings of the 27th IEEE Conference on Decision and Control (IEEE Cat. No.88CH2531-2), P1645, DOI 10.1109/CDC.1988.194606
[8]   ON THE ORDER OF STABLE COMPENSATORS [J].
SMITH, MC ;
SONDERGELD, KP .
AUTOMATICA, 1986, 22 (01) :127-129
[9]  
WANG YW, H2 SUBOPTIMAL STABLE
[10]   SINGLE-LOOP FEEDBACK-STABILIZATION OF LINEAR-MULTIVARIABLE DYNAMICAL PLANTS [J].
YOULA, DC ;
BONGIORNO, JJ ;
LU, CN .
AUTOMATICA, 1974, 10 (02) :159-173