FINITE-DIMENSIONAL REPRESENTATIONS OF U(Q)(OSP(1/2N)) AND ITS CONNECTION WITH QUANTUM SO(2N+1)

被引:35
作者
ZHANG, RB [1 ]
机构
[1] AUSTRALIAN NATL UNIV,INST ADV STUDIES,DEPT THEORET PHYS,CANBERRA,ACT 2600,AUSTRALIA
关键词
D O I
10.1007/BF00398404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the quantum supergroup U(q)(osp(1/2n)) is essentially isomorphic to the quantum group U-q(so(2n + 1)) restricted to tensorial representations. This renders it straightforward to classify all the finite-dimensional irreducible representations of U(q)(osp(1/2n)) at generic q. In particular, it is proved that at generic q, every-dimensional irrep of this quantum supergroup is a deformation of an osp(1/2n) irrep, and all the finite-dimensional representations are completely reducible.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 21 条
[1]  
[Anonymous], 1978, DIFFERENTIAL GEOMETR
[2]   QUANTUM LIE-SUPERALGEBRAS AND Q-OSCILLATORS [J].
CHAICHIAN, M ;
KULISH, P .
PHYSICS LETTERS B, 1990, 234 (1-2) :72-80
[3]   Q-OSCILLATOR REALIZATIONS OF THE METAPLECTIC REPRESENTATION OF QUANTUM OSP(3,2) [J].
DHOKER, E ;
FLOREANINI, R ;
VINET, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (06) :1427-1429
[4]  
Drinfeld V.G., 1986, P INT C MATH, V1, P789
[5]   Q-OSCILLATOR REALIZATIONS OF THE QUANTUM SUPERALGEBRAS SLQ(M,N) AND OSPQ(M,2N) [J].
FLOREANINI, R ;
SPIRIDONOV, VP ;
VINET, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (01) :149-160
[6]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[7]   QUANTUM DEFORMATIONS OF CERTAIN SIMPLE MODULES OVER ENVELOPING-ALGEBRAS [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1988, 70 (02) :237-249
[8]   FINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF THE QUANTUM SUPERALGEBRA UQ[GL(N/1)] [J].
PALEV, TD ;
TOLSTOY, VN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 141 (03) :549-558
[9]   A REMARKABLE CONNECTION BETWEEN THE REPRESENTATIONS OF THE LIE-SUPERALGEBRAS OSP(1,2N) AND THE LIE-ALGEBRAS O(2N+1) [J].
RITTENBERG, V ;
SCHEUNERT, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (01) :1-9
[10]   QUANTUM OSP(1,2) AND SOLUTIONS OF THE GRADED YANG-BAXTER EQUATION [J].
SALEUR, H .
NUCLEAR PHYSICS B, 1990, 336 (03) :363-376