3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

被引:109
作者
Asa'ad, Farah [1 ]
Pagni, Giorgio [1 ]
Pilipchuk, Sophia P. [2 ,3 ]
Giann, Aldo Bruno [1 ]
Giannobile, William V. [2 ,3 ]
Rasperini, Giulio [1 ]
机构
[1] Univ Milan, Dept Biomed Surg & Dent Sci, Fdn IRCCS Ca Granda Polyclin, Milan, Italy
[2] Univ Michigan, Sch Dent, Dept Periodont & Oral Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Coll Engn, Dept Biomed Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
10.1155/2016/1239842
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on "3D-printed" ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration.
引用
收藏
页数:15
相关论文
共 149 条
[1]   Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs [J].
Akizuki, T ;
Oda, S ;
Komaki, M ;
Tsuchioka, H ;
Kawakatsu, N ;
Kikuchi, A ;
Yamato, M ;
Okano, T ;
Ishikawa, I .
JOURNAL OF PERIODONTAL RESEARCH, 2005, 40 (03) :245-251
[2]   Metallic Scaffolds for Bone Regeneration [J].
Alvarez, Kelly ;
Nakajima, Hideo .
MATERIALS, 2009, 2 (03) :790-832
[3]  
Amini Ami R., 2012, Critical Reviews in Biomedical Engineering, V40, P363
[4]  
Aranaz I., 2009, CURR CHEM BIOL, V3, P203
[5]   Cellulose and Collagen Derived Micro-Nano Structured Scaffolds for Bone Tissue Engineering [J].
Aravamudhan, Aja ;
Ramos, Daisy M. ;
Nip, Jonathan ;
Harmon, Matthew D. ;
James, Roshan ;
Deng, Meng ;
Laurencin, Cato T. ;
Yu, Xiaojun ;
Kumbar, Sangamesh G. .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2013, 9 (04) :719-731
[6]   Pre-augmentation soft tissue expansion: an overview [J].
Asa'ad, Farah ;
Rasperini, Giulio ;
Pagni, Giorgio ;
Rios, Hector F. ;
Gianni, Aldo B. .
CLINICAL ORAL IMPLANTS RESEARCH, 2016, 27 (05) :505-522
[7]   OSTEOINDUCTIVE BIOMATERIALS: CURRENT KNOWLEDGE OF PROPERTIES, EXPERIMENTAL MODELS AND BIOLOGICAL MECHANISMS [J].
Barradas, Ana M. C. ;
Yuan, Huipin ;
van Blitterswijk, Clemens A. ;
Habibovic, Pamela .
EUROPEAN CELLS & MATERIALS, 2011, 21 :407-429
[8]   Bioactive and osteoinductive bone graft substitutes: Definitions, facts and myths [J].
Blokhuis, T. J. ;
Arts, J. J. Chris .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2011, 42 :S26-S29
[9]   Recent advances in bone tissue engineering scaffolds [J].
Bose, Susmita ;
Roy, Mangal ;
Bandyopadhyay, Amit .
TRENDS IN BIOTECHNOLOGY, 2012, 30 (10) :546-554
[10]   Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction [J].
Brown, Andrew ;
Zaky, Samer ;
Ray, Herbert, Jr. ;
Sfeir, Charles .
ACTA BIOMATERIALIA, 2015, 11 :543-553