ENTROPY OF A CONFINED POLYMER .I.

被引:108
作者
EDWARDS, SF
FREED, KF
机构
来源
JOURNAL OF PHYSICS PART A GENERAL | 1969年 / 2卷 / 02期
关键词
D O I
10.1088/0305-4470/2/2/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A study is made of the entropy of a random-flight polymer confined in a box of volume V. When the natural radius of the polymer approaches the linear size of the box, the entropy ceases to have the normal form of a thermodynamic function and the pressure is not a function of the density but takes the form PV= pi 2/3(Ll/R2) kappa T where L is the polymer length, l the step length and R equals V, and the density of the system even though strictly in equilibrium is not uniform. The introduction of constraints due to forces, cross linkages and very long-lived quasi-invariants restores the equation of state to a thermodynamic form P=P( rho ) where rho =L/Vl.
引用
收藏
页码:145 / &
相关论文
共 2 条
[1]   ENTROPY OF A CONFINED POLYMER .2. [J].
COLLINS, R ;
WRAGG, A .
JOURNAL OF PHYSICS PART A GENERAL, 1969, 2 (02) :151-&
[2]   STATISTICAL MECHANICS OF POLYMERIZED MATERIAL [J].
EDWARDS, SF .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 92 (575P) :9-&