THE NOISY VOTER MODEL

被引:96
作者
GRANOVSKY, BL
MADRAS, N
机构
[1] YORK UNIV,DEPT MATH & STAT,DOWNSVIEW,ON M3J 1P3,CANADA
[2] TECHNION ISRAEL INST TECHNOL,DEPT MATH,IL-32000 HAIFA,ISRAEL
基金
加拿大自然科学与工程研究理事会;
关键词
VOTER MODEL; NOISY VOTER MODEL; GRAPH; DUALITY; MORAN MODEL; TRANSIENT BEHAVIOR; RANDOM WALK; GREEN FUNCTION; CRITICAL EXPONENTS; SCALING;
D O I
10.1016/0304-4149(94)00035-R
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The noisy voter model is a spin system on a graph which may be obtained from the basic voter model by adding spontaneous flipping from 0 to 1 and from 1 to 0 at each site. Using duality, we obtain exact formulas for some important time-dependent and equilibrium functionals of this process. By letting the spontaneous flip rates tend to zero, we get the basic voter model, and we calculate the exact critical exponents associated with this ''phase transition''. Finally, we use the noisy voter model to present an alternate view of a result due to Cox and Griffeath on clustering in the two-dimensional basic voter model.
引用
收藏
页码:23 / 43
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 1993, SELF AVOIDING WALK
[2]  
[Anonymous], 1976, PRINCIPLES RANDOM WA
[3]  
[Anonymous], 1985, INTERACTING PARTICLE
[4]   BLOCK GRANT - SOME UNRESOLVED ISSUES [J].
BRAMLEY, G ;
EVANS, A .
POLICY AND POLITICS, 1981, 9 (02) :173-204
[5]  
CLIFFORD P, 1973, BIOMETRIKA, V60, P581, DOI 10.2307/2335008
[6]  
Cox J, 1991, RANDOM WALKS BROWNIA, P189
[7]   DIFFUSIVE CLUSTERING IN THE 2-DIMENSIONAL VOTER MODEL [J].
COX, JT ;
GRIFFEATH, D .
ANNALS OF PROBABILITY, 1986, 14 (02) :347-370
[8]   FINITE PARTICLE-SYSTEMS AND INFECTION MODELS [J].
DONNELLY, P ;
WELSH, D .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1983, 94 (JUL) :167-182
[9]   THE TRANSIENT-BEHAVIOR OF THE MORAN MODEL IN POPULATION-GENETICS [J].
DONNELLY, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAR) :349-358
[10]  
Feller W., 1971, INTRO PROBABILITY TH