SUMMABILITY OF POWER-SERIES BY NONREGULAR NORLUND-METHODS

被引:2
作者
STADTMULLER, K
机构
[1] Fachbereich IV, Universität Trier, Trier, D-5500
关键词
D O I
10.1016/0021-9045(92)90097-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a regular Nörlund-method (N, p) one can prove that the sequence {σn(z)} of the Nörlund-transforms of a power series f{hook}(z) = ∑v = 0∞ avzv with radius of convergence r = 1 converges in at most countably many points outside the unit disc. In this paper we show that for a class of non-regular Nörlund-methods the sequence {σn(z)} converges to an analytic function in a disc which strictly contains the unit disc, and the convergence is uniform on any compact subset of this disc. © 1992.
引用
收藏
页码:33 / 44
页数:12
相关论文
共 12 条
[1]   CONDITIONS FOR INCLUSION BETWEEN NORLUND SUMMABILITY METHODS [J].
BORWEIN, D ;
THORPE, B .
ACTA MATHEMATICA HUNGARICA, 1985, 45 (1-2) :151-158
[2]  
CHANDRA P, 1974, NANTA MATH, V7, P46
[3]  
FAULSTICH K, 1979, MITT MATH SEM GIESSE, V139
[4]  
JURKAT WB, 1985, J LOND MATH SOC, V31, P101
[5]   RELATIONS BETWEEN (N, PN) AND (BARN, PN) SUMMABILITY [J].
KUTTNER, B ;
RHOADES, BE .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1968, 16 :109-&
[6]  
KUTTNER B, 1979, J LOND MATH SOC, V19, P329
[7]  
KUTTNER B, 1980, HUSTON J MATH, V6, P287
[8]  
LEJA MF, 1930, B SCI MATH, V54, P239
[9]  
LUH W, 1974, PERIOD MATH HUNGAR, V5, P47
[10]  
MAYES, 1983, HUSTON J MATH, V9, P217