DISCRETIZATION METHODS FOR THE SOLUTION OF SEMI-INFINITE PROGRAMMING-PROBLEMS

被引:57
作者
REEMTSEN, R
机构
[1] Fachbereich Mathematik, Technische Universität Berlin, Berlin
关键词
NONLINEAR PROGRAMMING; SEMI-INFINITE PROGRAMMING; DISCRETIZATION OF SEM-INFINITE PROGRAMMING PROBLEMS; CHEBYSHEV APPROXIMATION;
D O I
10.1007/BF00940041
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the first part of this paper, we prove the convergence of a class of discretization methods for the solution of nonlinear semi-infinite programming problems, which includes known methods for linear problems as special cases. In the second part, we modify and study this type of algorithms for linear problems and suggest a specific method which requires the solution of a quadratic programming problem at each iteration. With this algorithm, satisfactory results can also be obtained for a number of singular problems. We demonstrate the performance of the algorithm by several numerical examples of multivariate Chebyshev approximation problems.
引用
收藏
页码:85 / 103
页数:19
相关论文
共 13 条
[1]   NECESSARY CONDITIONS FOR A MINIMAX APPROXIMATION [J].
CURTIS, AR ;
POWELL, MJD .
COMPUTER JOURNAL, 1966, 8 (04) :358-&
[2]  
Fiacco A.V., 1983, SEMIINFINITE PROGRAM
[3]   A NUMERICALLY STABLE DUAL METHOD FOR SOLVING STRICTLY CONVEX QUADRATIC PROGRAMS [J].
GOLDFARB, D ;
IDNANI, A .
MATHEMATICAL PROGRAMMING, 1983, 27 (01) :1-33
[4]   AN IMPLEMENTATION OF A DISCRETIZATION METHOD FOR SEMI-INFINITE PROGRAMMING [J].
HETTICH, R .
MATHEMATICAL PROGRAMMING, 1986, 34 (03) :354-361
[5]  
HETTICH R, 1979, SEMIINFINITE PROGRAM
[6]  
Hettich R., 1982, NUMERISCHE METHODEN
[7]  
JUERGENS U, 1986, HESIS U HAMBURG
[8]   A NOTE ON THE REGULARIZATION OF DISCRETE APPROXIMATION-PROBLEMS [J].
REEMTSEN, R .
JOURNAL OF APPROXIMATION THEORY, 1989, 58 (03) :352-357
[9]   MODIFICATIONS OF THE 1ST REMEZ ALGORITHM [J].
REEMTSEN, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) :507-518
[10]  
Tichatschke R., 1988, Optimization, V19, P803, DOI 10.1080/02331938808843393