CRITICAL-BEHAVIOR OF ANISOTROPIC SPIN-S HEISENBERG-CHAINS

被引:47
作者
ALCARAZ, FC
MOREO, A
机构
[1] UNIV FED SAO CARLOS, DEPT FIS, BR-13560 SAO CARLOS, SP, BRAZIL
[2] FLORIDA STATE UNIV, DEPT PHYS, TALLAHASSEE, FL 32306 USA
[3] FLORIDA STATE UNIV, CTR MAT RES & TECHNOL, TALLAHASSEE, FL 32306 USA
关键词
D O I
10.1103/PhysRevB.46.2896
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using a Lanczos method, we study the spectra of Heisenberg chains with spin S = 1, 3/2, 2, 5/2, and 3, as a function of the anisotropy parameter-lambda and the number of sites of the chain. We use periodic, twisted, and open boundary conditions. We found that for all values of the spin when -1 less-than-or-equal-to lambda less-than-or-equal-to 0, these mod-els are massless with critical behavior described by a conformal theory with central charge c = 1. We discuss the whole operator content. In particular, we found that the critical exponent eta(x) follows the behavior eta(x) = (pi-gamma)/2-pi-S and eta(z) = 2 where gamma = cos-1(lambda). For lambda > 0, our results indicate that the S = 1 model is massive, while for S > 1, the massless behavior characterized by the critical exponents described above continues up to lambda = lambda* (S). For lambda* < lambda less-than-or-equal-to 1, our results are consistent with a massive phase for the integer-spin models and a massless phase with a rapid variation of the critical exponents for the half-integer-spin models.
引用
收藏
页码:2896 / 2907
页数:12
相关论文
共 44 条
[31]   MAGNETIC-BEHAVIOR OF VANADIUM +II IN ONE-DIMENSIONAL AND 2-DIMENSIONAL SYSTEMS [J].
NIEL, M ;
CROS, C ;
LEFLEM, G ;
POUCHARD, M ;
HAGENMULLER, P .
PHYSICA B & C, 1977, 86 (JAN-M) :702-704
[32]   PHASE-DIAGRAMS AND CORRELATION EXPONENTS FOR QUANTUM SPIN CHAINS OF ARBITRARY SPIN QUANTUM NUMBER [J].
SCHULZ, HJ .
PHYSICAL REVIEW B, 1986, 34 (09) :6372-6385
[33]   FINITE-LENGTH CALCULATIONS OF ETA-DIAGRAM AND PHASE-DIAGRAM OF QUANTUM SPIN CHAINS [J].
SCHULZ, HJ ;
ZIMAN, T .
PHYSICAL REVIEW B, 1986, 33 (09) :6545-6548
[34]   NEW FACTORIZED S-MATRIX AND ITS APPLICATION TO EXACTLY SOLVABLE Q-STATE MODEL .1. [J].
SOGO, K ;
AKUTSU, Y ;
ABE, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (03) :730-738
[36]  
SOLYOM J, 1984, PHYS REV B, V30, P3980, DOI 10.1103/PhysRevB.30.3980
[37]   THE PICTURE OF LOW-LYING EXCITATIONS IN THE ISOTROPIC HEISENBERG CHAIN OF ARBITRARY SPINS [J].
TAKHTAJAN, LA .
PHYSICS LETTERS A, 1982, 87 (09) :479-482
[38]  
VANDENBROECK JM, 1979, SIAM J MATH ANAL, V10, P658, DOI 10.1137/0510061
[39]   QUANTUM-THEORY OF 1- AND 2-DIMENSIONAL FERROMAGNETS AND ANTIFERROMAGNETS W AN EASY MAGNETIZATION PLANE .1. IDEAL 1-D OR 2-D LATTICES WITHOUT IN-PLANE ANISOTROPY [J].
VILLAIN, J .
JOURNAL DE PHYSIQUE, 1974, 35 (01) :27-47
[40]   EXCITATION SPECTRUM OF THE SPIN-1/2 HEISENBERG CHAIN AND CONFORMAL-INVARIANCE [J].
WOYNAROVICH, F .
PHYSICAL REVIEW LETTERS, 1987, 59 (03) :259-261