SOLITARY WAVE COLLISIONS

被引:141
作者
ABLOWITZ, MJ
KRUSKAL, MD
LADIK, JF
机构
[1] PRINCETON UNIV,PROGRAM APPL MATH,PRINCETON,NJ 08540
[2] COLGATE UNIV,DEPT MATH,HAMILTON,NY 13346
关键词
Compendex;
D O I
10.1137/0136033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The interactions of nonperiodic solitary waves are numerically investigated for the nonlinear Klein-Gordon equation. It is found that the collisions are generally inelastic. Special solutions to the sine-Gordon equation are discussed.
引用
收藏
页码:428 / 437
页数:10
相关论文
共 8 条
[1]   METHOD FOR SOLVING SINE-GORDON EQUATION [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 30 (25) :1262-1264
[2]   MULTISOLITON SOLUTIONS OF NONLINEAR DISPERSIVE WAVE-EQUATIONS NOT SOLUBLE BY INVERSE METHOD [J].
DODD, RK ;
BULLOUGH, RK ;
DUCKWORTH, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1975, 8 (07) :L64-L68
[3]   PERTURBATION EXPANSION FOR ZAKHAROV-SHABAT INVERSE SCATTERING TRANSFORM [J].
KAUP, DJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) :121-133
[4]  
KUDRYAVTSEV AE, 1975, JETP LETT+, V22, P82
[6]   A MODEL UNIFIELD FIELD EQUATION [J].
PERRING, JK ;
SKYRME, THR .
NUCLEAR PHYSICS, 1962, 31 (04) :550-+
[7]   THEORIE DER VERSETZUNGEN IN EINDIMENSIONALEN ATOMREIHEN .3. VERSETZUNGEN, EIGENBEWEGUNGEN UND IHRE WECHSELWIRKUNG [J].
SEEGER, A ;
DONTH, H ;
KOCHENDORFER, A .
ZEITSCHRIFT FUR PHYSIK, 1953, 134 (02) :173-193
[8]  
Seeger A, 1955, HDB PHYSIK, V7, P383