On the complex k-Fibonacci numbers

被引:4
作者
Falcon, Sergio [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Math, Las Palmas Gran Canaria 35017, Spain
来源
COGENT MATHEMATICS | 2016年 / 3卷
关键词
k-Fibonacci numbers; Binet identity; complex numbers;
D O I
10.1080/23311835.2016.1201944
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first study the relationship between the k-Fibonacci numbers and the elements of a subset of Q(2). Later, and since generally studies that are made on the Fibonacci sequences consider that these numbers are integers, in this article, we study the possibility that the index of the k-Fibonacci number is fractional; concretely, 2n+1/2. In this way, the k-Fibonacci numbers that we obtain are complex. And in our desire to find integer sequences, we consider the sequences obtained from the moduli of these numbers. In this process, we obtain several integer sequences, some of which are indexed in The Online Enciplopedy of Integer Sequences (OEIS).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the k-Fibonacci words
    Ramirez, Jose L.
    Rubiano, Gustavo N.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2013, 5 (02) : 212 - 226
  • [22] On k-Fibonacci numbers expressible as product of two Balancing or Lucas-Balancing numbers
    Rihane, Salah Eddine
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025, 56 (01) : 339 - 356
  • [23] On k-Fibonacci numbers expressible as product of two Balancing or Lucas-Balancing numbers
    Rihane, Salah Eddine
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, : 339 - 356
  • [24] CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS RELATED TO k-FIBONACCI NUMBERS
    Guney, H. Ozlem
    Murugusundaramoorthy, G.
    Sokol, J.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1909 - 1921
  • [25] CATALAN TRANSFORM OF THE k-FIBONACCI SEQUENCE
    Falcon, Sergio
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (04): : 827 - 832
  • [26] An upper bound for third Hankel determinant of starlike functions connected with k-Fibonacci numbers
    Guney, H. Ozlem
    Ilhan, Sedat
    Sokol, Janusz
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (01): : 117 - 129
  • [27] The k-Fibonacci matrix and the Pascal matrix
    Falcon, Sergio
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (06): : 1403 - 1410
  • [28] On the Binomial Sums of k-Fibonacci and k-Lucas sequences
    Yilmaz, N.
    Taskara, N.
    Uslu, K.
    Yazlik, Y.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [30] The generalized k-Fibonacci polynomials and generalized k-Lucas polynomials
    Tastan, Merve
    Ozkan, Engin
    Shannon, Anthony G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (02) : 148 - 158