On the complex k-Fibonacci numbers

被引:4
|
作者
Falcon, Sergio [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Math, Las Palmas Gran Canaria 35017, Spain
来源
COGENT MATHEMATICS | 2016年 / 3卷
关键词
k-Fibonacci numbers; Binet identity; complex numbers;
D O I
10.1080/23311835.2016.1201944
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first study the relationship between the k-Fibonacci numbers and the elements of a subset of Q(2). Later, and since generally studies that are made on the Fibonacci sequences consider that these numbers are integers, in this article, we study the possibility that the index of the k-Fibonacci number is fractional; concretely, 2n+1/2. In this way, the k-Fibonacci numbers that we obtain are complex. And in our desire to find integer sequences, we consider the sequences obtained from the moduli of these numbers. In this process, we obtain several integer sequences, some of which are indexed in The Online Enciplopedy of Integer Sequences (OEIS).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On the powers of the k-Fibonacci numbers
    Falcon, Sergio
    ARS COMBINATORIA, 2016, 127 : 329 - 338
  • [2] ON THE GENERALIZED k-FIBONACCI NUMBERS
    Falcon, Sergio
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 193 - 199
  • [3] On the Bihyperbolic k-Fibonacci Numbers
    Falcon, Sergio
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2024, 15 (02): : 525 - 532
  • [4] On k-Fibonacci numbers of arithmetic indexes
    Falcon, Sergio
    Plaza, Angel
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) : 180 - 185
  • [5] ON THE INTERSECTION OF k-FIBONACCI AND PELL NUMBERS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Herrera, Jose L.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) : 535 - 547
  • [6] On generalized bicomplex k-Fibonacci numbers
    Yagmur, Tulay
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (04) : 123 - 133
  • [7] An exponential equation involving k-Fibonacci numbers
    Gueye, Alioune
    Rihane, Salah Eddine
    Togbe, Alain
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (06) : 2664 - 2677
  • [8] ON THE LARGEST PRIME FACTOR OF THE k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1351 - 1366
  • [9] Binomial Transform of the Generalized k-Fibonacci Numbers
    Falcon, Sergio
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 643 - 651
  • [10] k-Fibonacci and k-Lucas numbers as (l, m)-antipalindromic numbers
    Brahmi, Adel
    Mokhtar, Ahmed Ait
    Rihane, Salah Eddine
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (02):