ON THE SHOT-NOISE STREAMFLOW MODEL AND ITS APPLICATIONS

被引:10
作者
KONECNY, F
机构
[1] Institut für Mathematik und Angewandte Statistik der Universität für Bodenkultur, Wien, A-1180
来源
STOCHASTIC HYDROLOGY AND HYDRAULICS | 1992年 / 6卷 / 04期
关键词
STREAM FLOW SERIES; SHOT-NOISE MODEL; SADOLLE-POINT APPROXIMATION;
D O I
10.1007/BF01581622
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper we consider the shot-noise model of streamflow series. We show how design discharge can be obtained by the stochastic intensity of thinned Poisson processes describing the peaks over a threshold. The main result concerns the stationary distribution of peaks. We derive an explicit expression for this limit distribution in terms of its Laplace transform. Approximation formulas are developed making use of the saddle point method for the asymptotic evaluation of contour integrals and the Post-Widder formula for inversion of Laplace transforms. We illustrate this methods on the case of Gamma-distributed shots. The stationary peak distribution is used to approximate the maximum value distribution for larger time intervals.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 21 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]   STOCHASTIC PROCESS MODELS FOR DESCRIBING DAILY RIVER FLOW [J].
BERNIER, J .
REVUE DE L INSTITUT INTERNATIONAL DE STATISTIQUE-REVIEW OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1970, 38 (01) :49-&
[3]   A REVIEW ON STOCHASTIC DIFFERENTIAL-EQUATIONS FOR APPLICATIONS IN HYDROLOGY [J].
BODO, BA ;
THOMPSON, ME ;
UNNY, TE .
STOCHASTIC HYDROLOGY AND HYDRAULICS, 1987, 1 (02) :81-100
[4]  
Bremaud P., 1981, POINT PROCESSES QUEU
[5]  
DANIELS HE, 1960, J ROY STAT SOC B, V22, P376
[6]   SADDLEPOINT APPROXIMATIONS IN STATISTICS [J].
DANIELS, HE .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (04) :631-650
[7]   NUMERICAL INVERSION OF THE LAPLACE TRANSFORM - SURVEY AND COMPARISON OF METHODS [J].
DAVIES, B ;
MARTIN, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 33 (01) :1-32
[9]   NONNEGATIVE TIME-SERIES MODELS FOR DRY RIVER FLOW [J].
HUTTON, JL .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (01) :171-182
[10]  
HUTTON JL, 1986, THESIS U LONDON