Parameter Optimization of Local Fuzzy Patterns Based on Fuzzy Contrast Measure for White Blood Cell Texture Feature Extraction

被引:11
作者
Fatichah, Chastine [1 ,2 ]
Tangel, Martin Leonard [1 ]
Widyanto, Muhammad Rahmat [3 ]
Dong, Fangyan [1 ]
Hirota, Kaoru [1 ]
机构
[1] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Midori Ku, G3-49,4259 Nagatsuta, Yokohama, Kanagawa 2268502, Japan
[2] Inst Teknol Sepuluh Nopember, Fac Technol Informat, Informat Dept, Surabaya 60111, Indonesia
[3] Univ Indonesia, Fac Comp Sci, Depok, Jawa Barat, Indonesia
关键词
local fuzzy patterns; fuzzy contrast measure; white blood cell image; texture feature extraction; white blood cell classification;
D O I
10.20965/jaciii.2012.p0412
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The parameter optimization of local fuzzy patterns based on the fuzzy contrast measure is proposed for extracting white blood cell texture. The proposed method obtains the optimal parameter values of the nucleus and cytoplasm region of white blood cell image and the best accuracy rate of white blood cell classification can therefore be achieved. To evaluate the performance of the proposed method, 100 microscopic white blood cell images and the supervised learning method are used for white blood cell classification. Results show that the average accuracy rate of white blood cell classification using local fuzzy pattern features with optimal parameter values of a nucleus and a cytoplasm region is 4% more accurate than with uniform parameter values and is 5-18% more accurate than other feature extraction methods. White blood cell feature extraction is part of the white blood cell classification in an automatic cancer diagnosis that is being developed. In addition, the proposed method can be used to obtain the optimal parameter of local fuzzy patterns for other types of datasets.
引用
收藏
页码:412 / 419
页数:8
相关论文
共 15 条
[1]   Ontology-based lymphocyte population description using mathematical morphology on colour blood images [J].
Angulo, J. ;
Klossa, J. ;
Flandrin, G. .
CELLULAR AND MOLECULAR BIOLOGY, 2006, 52 (06) :2-15
[2]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[3]  
Caponetti L, 2006, LECT NOTES ARTIF INT, V4252, P340
[4]   SVM-KM:: speeding SVMs learning with a priori cluster selection and k-means [J].
de Almeida, MB ;
Braga, AD ;
Braga, JP .
SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, :162-167
[5]  
Eom S, 2006, LECT NOTES COMPUT SC, V4179, P867
[6]  
Fatichah C., 2011, WORLD C INT FUZZ SYS
[7]   A Feature Extraction Method Based on Morphological Operators for Automatic Classification of Leukocytes [J].
Gomez-Gil, Pilar ;
Ramirez-Cortes, Manuel ;
Gonzalez-Bernal, Jesus ;
Pedrero, Angel Garcia ;
Prieto-Castro, Cesar I. ;
Valencia, Daniel ;
Lobato, Ruben ;
Alonso, Jose E. .
PROCEEDINGS OF THE SPECIAL SESSION OF THE SEVENTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE - MICAI 2008, 2008, :227-232
[8]  
Gorecki P, 2007, LECT NOTES ARTIF INT, V4578, P362
[9]   A method based on multispectral imaging technique for White Blood Cell segmentation [J].
Guo, Ningning ;
Zeng, Libo ;
Wu, Qiongshui .
COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (01) :70-76
[10]  
Hiremath P.S., 2010, IJCA RECENT TRENDS I