ONE-DIMENSIONAL LOCAL-RINGS OF MAXIMAL AND ALMOST MAXIMAL LENGTH

被引:22
作者
BROWN, WC [1 ]
HERZOG, J [1 ]
机构
[1] UNIV ESSEN GESAMTHSCH,FACHBEREICH MATH 6,W-4300 ESSEN 1,GERMANY
关键词
D O I
10.1016/0021-8693(92)90118-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (A, m, k) denote a one dimensional, Cohen-Macaulay, local ring with maximal ideal m and residue class field k. We assume A is a reduced, excellent local ring which has a canonical module ωA. With no loss of generality, we can also assume k is infinite. Let Ā denote the integral closure of A in its total quotient ring Q, and let b denote the conductor of A in Ā. A has maximal length if lA( A ̄ A) = lA( A b) t(A) Here t(A) denotes the Cohen-Macaulay type of A, and lA(*) denotes the length of the A-module *. A has almost maximal length if lA( A ̄ A) = lA( A b) t(A) - 1 The two main results of this paper are as follows: A has maximal length if and only if either A is Gorenstein or there exists an x ε{lunate} m and a positive integer p such that m = (x, b), andb A ̄ = xp A ̄. Let e(A) denote the multiplicity of A, Then A has almost maximal length, and 1 + t(A) = e(A) if and only if there exists a transversal x of m such that m = (x, b), and lA( b xp A ̄) = 1. Here p = min{i|xiε{lunate}b} These two theorems generalize more specific results for semigroup rings obtained in Brown and Curtis ("Numerical Semigroups of Maximal and Almost Maximal Length," Semigroup Forum, Vol. 42, Springer-Verlag, Berlin/New York, 1991, 219-235). © 1992.
引用
收藏
页码:332 / 347
页数:16
相关论文
共 14 条
[1]   NUMERICAL SEMIGROUPS OF MAXIMAL AND ALMOST MAXIMAL LENGTH [J].
BROWN, WC ;
CURTIS, F .
SEMIGROUP FORUM, 1991, 42 (02) :219-235
[2]  
FROBERG R, 1986, 1 U STOCKH REP
[3]   ON THE COHEN-MACAULAY TYPE OF S-LINES IN AN+1 [J].
GERAMITA, AV ;
ORECCHIA, F .
JOURNAL OF ALGEBRA, 1981, 70 (01) :116-140
[4]  
GROTHENDIECK A, ELEMENTS GEOMETRIE 2, V4
[5]  
Herrmann M., 1988, EQUIMULTIPLICITY BLO
[6]  
HERZOG J, 1971, S B HEIDERBERGER AKA, V2, P26
[7]  
Herzog J., 1971, LECTURE NOTES MATH, V238
[8]   STABLE IDEALS AND ARF RINGS [J].
LIPMAN, J .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (03) :649-&
[9]  
MATSUMURA H, 1986, COMMUTATIVE RING THE
[10]  
ORECCHIA F, 1981, J LOND MATH SOC, V24, P85