MAXIMAL SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES .2.

被引:6
作者
EVANS, AB [1 ]
机构
[1] WRIGHT STATE UNIV,DEPT MATH & STAT,DAYTON,OH 45435
关键词
D O I
10.1016/S0195-6698(05)80013-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One problem of interest in the study of Latin squares is that of determining parameter pairs (n, r) for which there exists a maximal set of r mutually orthogonal Latin squares of order n. In this paper we prove the existence of maximal sets of (p - 3)/2 mutually orthogonal Latin squares of order p, p ≥ 7 a prime congruent to 3 modulo 4, and of maximal sets of (p - 1)/2 mutually orthogonal Latin squares of order p, p > 7 a prime congruent to 1 modulo 4. © 1992 Academic Press Limited.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 10 条
[1]  
Carlitz L., 1960, P AM MATH SOC, V11, P456, DOI DOI 10.1090/S0002-9939-1960-0117223-6
[2]  
Evans A. B, 1989, J GEOM, V34, P36
[3]  
Evans A. B., 1984, C NUMER, V44, P41
[4]  
EVANS AB, 1989, ARS COMBINATORIA, V27, P121
[5]   ORTHOMORPHISMS OF ZP [J].
EVANS, AB .
DISCRETE MATHEMATICS, 1987, 64 (2-3) :147-156
[6]   MAXIMAL SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES .1. [J].
EVANS, AB .
EUROPEAN JOURNAL OF COMBINATORICS, 1991, 12 (06) :477-482
[7]  
Lenz, 1985, DESIGN THEORY
[8]  
LIDL R, 1983, ENCY MATH APPLICATIO, V20
[9]  
MENDELSOHN NS, 1985, PURE APPL MATH, V103, P199
[10]   REPLACEABLE NETS NET COLLINEATIONS AND NET EXTENSIONS [J].
OSTROM, TG .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (03) :666-&