DETERMINING INPUT FEATURES FOR MULTILAYER PERCEPTRONS

被引:102
作者
BELUE, LM
BAUER, KW
机构
[1] Department of Operational Sciences, Air Force Institute of Technology, United States Air Force
关键词
MULTILAYER PERCEPTRON; FEATURE SELECTION; SALIENCY;
D O I
10.1016/0925-2312(94)E0053-T
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method of selecting salient features from a superset of features is developed. Two metrics are used to measure the average saliency of injected noise. A confidence interval constructed around this average allows for the identification of features that contribute little to classification. This feature selection method is applied to an exclusive-or (XOR) problem containing noise and a four-class problem. This method of determining input features is shown to result in more accurate, faster training multilayer perceptron classifiers.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 10 条
[1]  
BELUE LM, 1990, THESIS SCH ENG
[2]  
CYBENKO G, IN PRESS MATH CONTRO
[3]  
Devijver PA, 1982, PATTERN RECOGNITION
[4]  
Dillon W. R., 1984, MULTIVARIATE ANAL ME
[5]  
Hecht-Nielsen R., 1990, NEUROCOMPUTING
[6]  
Rogers S. K., 1991, INTRO BIOL ARTIFICIA
[7]  
RUCK DW, 1990, THESIS SCH ENG
[8]  
RUCK DW, 1990, NEURAL NETWORK COMPU, V20, P40
[9]  
STEPPE JM, 1992, THESIS SCH ENG
[10]  
TARR G, 1991, THESIS SCH ENG