A POSTERIORI ERROR-ESTIMATES BASED ON HIERARCHICAL BASES

被引:194
作者
BANK, RE [1 ]
SMITH, RK [1 ]
机构
[1] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
FINITE ELEMENT METHODS; ADAPTIVE MESH REFINEMENT; A POSTERIORI ERROR ESTIMATES; HIERARCHICAL BASIS;
D O I
10.1137/0730048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors present an analysis of an a posteriori error estimator based on the use of hierarchical basis functions. The authors analyze nonlinear, nonselfadjoint, and indefinite problems as well as the selfadjoint, positive-definite case. Because both the analysis and the estimator itself are quite simple, it is easy to see how various approximations affect the quality of the estimator. As examples, the authors apply the theory to some scalar elliptic equations and the Stokes system of equations.
引用
收藏
页码:921 / 935
页数:15
相关论文
共 22 条
  • [1] Arnold D., 1984, CALCOLO, V21, P337, DOI 10.1007/bf02576171
  • [2] ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) : 736 - 754
  • [3] A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) : 1597 - 1615
  • [4] BABUSKA I, 1985, BASIC PRINCIPLES FEE
  • [5] Babuska I., 1972, MATH FDN FINITE ELEM, P1
  • [6] BABUSKA I, 1986, ACCURACY ESTIMATES A
  • [7] THE HIERARCHICAL BASIS MULTIGRID METHOD
    BANK, RE
    DUPONT, TF
    YSERENTANT, H
    [J]. NUMERISCHE MATHEMATIK, 1988, 52 (04) : 427 - 458
  • [8] BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
  • [9] BANK RE, 1990, SOFTWARE PACKAGE SOL
  • [10] BENBOURENANE M, 1991, THESIS U CALIFORNIA