TRANSPORT AS A DYNAMIC PROPERTY OF A SIMPLE MAP

被引:27
作者
HASEGAWA, HH
DRIEBE, DJ
机构
[1] Center for Studies in Statistical Mechanics and Complex Systems, University of Texas at Austin, Austin
关键词
D O I
10.1016/0375-9601(92)90322-D
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a simple chaotic system given by a map which displays diffusion. The decaying eigenstates of the Frobenius-Perron operator of the map are constructed. These eigenstates are associated with the Ruelle resonances. The eigenstate associated with diffusion is considered in particular. The result implies a deep connection between the thermodynamical properties of a system and its underlying exact dynamics.
引用
收藏
页码:18 / 24
页数:7
相关论文
共 11 条
[1]  
ANTONIOU I, IN PRESS NUOVO CIMEN
[2]   DIFFUSION IN UNIFORMLY HYPERBOLIC ONE-DIMENSIONAL MAPS AND APPELL POLYNOMIALS [J].
GASPARD, P .
PHYSICS LETTERS A, 1992, 168 (01) :13-17
[3]  
Gaspard P., 1990, DIFFUSION EFFUSION C
[4]  
GASPARD P, 1992, R RADIC ONE DIMENSIO
[5]   DIFFUSION IN DISCRETE NON-LINEAR DYNAMICAL-SYSTEMS [J].
GROSSMANN, S ;
FUJISAKA, H .
PHYSICAL REVIEW A, 1982, 26 (03) :1779-1782
[6]   DECAYING EIGENSTATES FOR SIMPLE CHAOTIC SYSTEMS [J].
HASEGAWA, HH ;
SAPHIR, WC .
PHYSICS LETTERS A, 1992, 161 (06) :471-476
[7]  
Kaneko K, 1990, FORMATION DYNAMICS S
[8]   FROM DETERMINISTIC DYNAMICS TO PROBABILISTIC DESCRIPTIONS [J].
MISRA, B ;
PRIGOGINE, I ;
COURBAGE, M .
PHYSICA A, 1979, 98 (1-2) :1-26
[9]  
PRIGOGINE I, 1973, CHEM SCRIPTA, V4, P5
[10]  
PRIGOGINE I, 1980, NONEQUILIBRIUM STATI