RENORMALIZATION-GROUP FLOWS IN GENERALIZED TODA FIELD-THEORIES

被引:10
作者
GRISARU, MT
LERDA, A
PENATI, S
ZANON, D
机构
[1] MIT,CTR THEORET PHYS,NUCL SCI LAB,CAMBRIDGE,MA 02139
[2] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
[3] UNIV MILAN,DEPARTIMENTO FIS,I-20133 MILAN,ITALY
[4] NATL INST NUCL PHYS,MILAN,ITALY
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(90)90281-H
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the scaling properties and renormalization-group flows of models that describe SU(N) Toda field theories in the presence of a background charge. In the Kosterlitz-Thouless region the N > 2 affine Toda theory is not renormalizable and additional couplings must be included. We consider the SU(3) case in detail and compute in perturbation theory the renormalization group beta-functions. We exhibit RG trajectories connecting UV and IR fixed points where the central charge matches the values of the central charge of conformal field theories with a W3 algebra. Finally, we generalized out results to arbitrary N. © 1990.
引用
收藏
页码:264 / 292
页数:29
相关论文
共 57 条
[21]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348
[22]  
DRINFELD VG, 1985, J SOVIET MATH, V30, P1977
[23]   SINE-GORDON THEORY AT RATIONAL VALUES OF THE COUPLING-CONSTANT AND MINIMAL CONFORMAL MODELS [J].
EGUCHI, T ;
YANG, SK .
PHYSICS LETTERS B, 1990, 235 (3-4) :282-286
[24]   DEFORMATIONS OF CONFORMAL FIELD-THEORIES AND SOLITON-EQUATIONS [J].
EGUCHI, T ;
YANG, SK .
PHYSICS LETTERS B, 1989, 224 (04) :373-378
[25]   CONFORMAL QUANTUM-FIELD THEORY MODELS IN 2 DIMENSIONS HAVING Z3 SYMMETRY [J].
FATEEV, VA ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1987, 280 (04) :644-660
[26]   THE MODELS OF TWO-DIMENSIONAL CONFORMAL QUANTUM-FIELD THEORY WITH ZN SYMMETRY [J].
FATEEV, VA ;
LYKYANOV, SL .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1988, 3 (02) :507-520
[27]  
FATEEV VA, 1990, INT J MOD PHYS A
[28]   BRST APPROACH TO MINIMAL MODELS [J].
FELDER, G .
NUCLEAR PHYSICS B, 1989, 317 (01) :215-236
[29]   CONFORMAL-INVARIANCE, UNITARITY, AND CRITICAL EXPONENTS IN 2 DIMENSIONS [J].
FRIEDAN, D ;
QIU, Z ;
SHENKER, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (18) :1575-1578
[30]  
GODDARD P, 1985, PHYS LETT B, V152, P88, DOI 10.1016/0370-2693(85)91145-1