INTEGRAL-EQUATION METHOD FOR HIGH-FREQUENCIES

被引:0
作者
ABBOUD, T
NEDELEC, JC
ZHOU, B
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1994年 / 318卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in the numerical approximation of the problem of the scattering of an electromagnetic plane wave by a bounded obstacle in R2 or R3, using the boundary integral equation method. A new choice of boundary finite element spaces leads to a good approximation with a number of degrees of freedom as 0 (k1/3) in dimension 2 and O (k2/3) in dimension 3, instead of O(k) and O(k2) respectively with a classical finite element method (k is the wave number). That makes the integral equation method more suitable for high frequency problems, and furthermore that works with rather general boundary conditions.
引用
收藏
页码:165 / 170
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 1981, PRINCETON MATH SERIE
[2]  
BENDALI A, 1984, THESIS PARIS 6
[3]  
Colton D., 1983, INTEGRAL EQUATION ME
[4]  
DAUTRAY R, 1988, ANAL NUMERIQUE CALCU, V6
[5]  
GIROIRE J, 1982, INTEGRAL EQUATION ME, V5
[6]  
HAMDI MA, 1981, CR ACAD SCI II, V292, P17
[7]   NEAR PEAK SCATTERING AND THE CORRECTED KIRCHHOFF APPROXIMATION FOR A CONVEX-OBSTACLE [J].
MELROSE, RB ;
TAYLOR, ME .
ADVANCES IN MATHEMATICS, 1985, 55 (03) :242-315
[8]  
NEDELEC JC, 1978, CR ACAD SCI A MATH, V286, P103
[9]  
NEDELEC JC, IN PRESS COURS DEA
[10]  
Treves F., 1980, U SERIES MATH, V1