STATISTICAL-MECHANICAL FOUNDATION OF THE UBIQUITY OF LEVY DISTRIBUTIONS IN NATURE

被引:446
作者
TSALLIS, C
LEVY, SVF
SOUZA, AMC
MAYNARD, R
机构
[1] CORNELL UNIV, CTR MAT SCI, ITHACA, NY 14853 USA
[2] CTR BRASILEIRO PESQUISAS FIS, BR-22290180 RIO DE JANEIRO, BRAZIL
[3] UNIV MINNESOTA, CTR GEOMETRY, MINNEAPOLIS, MN 55454 USA
[4] UNIV FED SERGIPE, DEPT FIS, BR-49100000 ARACAJU, SERGIPE, BRAZIL
[5] CNRS, EXPT NUMER LAB, F-38042 GRENOBLE, FRANCE
关键词
D O I
10.1103/PhysRevLett.75.3589
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the use of the recently proposed thermostatistics based on the generalized entropic form S-q = k(1 - Sigma(i) Pi(q))/(q - 1) (where q is an element of R, with q = 1 corresponding to the Boltzmann-Gibbs-Shannon entropy -k Sigma(i) pi ln pi), together with the Levy-Gnedenko generalization of the central limit theorem, provide a basic step towards the understanding of why Levy distributions are ubiquitous in nature. A consistent experimental verification is proposed.
引用
收藏
页码:3589 / 3593
页数:5
相关论文
共 48 条
  • [41] GENERALIZATION OF THE PLANCK RADIATION LAW AND APPLICATION TO THE COSMIC MICROWAVE BACKGROUND-RADIATION
    TSALLIS, C
    BARRETO, FCS
    LOH, ED
    [J]. PHYSICAL REVIEW E, 1995, 52 (02): : 1447 - 1451
  • [42] TSALLIS C, IN PRESS PHYS LETT A
  • [43] TSALLIS C, IN PRESS FRACTALS
  • [44] Wolfram S., 1992, MATH SYSTEM DOING MA
  • [45] THERMODYNAMICS OF ANOMALOUS DIFFUSION
    ZANETTE, DH
    ALEMANY, PA
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (03) : 366 - 369
  • [46] Renormalization group theory of anomalous transport in systems with Hamiltonian chaos
    Zaslavsky, G. M.
    [J]. CHAOS, 1994, 4 (01) : 25 - 33
  • [47] FRACTIONAL KINETIC-EQUATION FOR HAMILTONIAN CHAOS
    ZASLAVSKY, GM
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1994, 76 (1-3) : 110 - 122
  • [48] SELF-SIMILAR TRANSPORT IN INCOMPLETE CHAOS
    ZASLAVSKY, GM
    STEVENS, D
    WEITZNER, H
    [J]. PHYSICAL REVIEW E, 1993, 48 (03): : 1683 - 1694