DYSON-PHILLIPS EXPANSION AND UNBOUNDED PERTURBATIONS OF LINEAR C(0)-SEMIGROUPS

被引:8
作者
RHANDI, A [1 ]
机构
[1] UNIV FRANCHE COMTE,MATH LAB,F-25030 BESANCON,FRANCE
关键词
BANACH LATTICE; C(0)-SEMIGROUP; DYSON-PHILLIPS EXPANSION; SMALLEST POSITIVE SEMIGROUP; PERTURBATION OF MIYADERA TYPE;
D O I
10.1016/0377-0427(92)90005-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a c0-semigroup (U(t))t greater-than-or-equal-to 0 on a Banach space E with generator A and an unbounded linear operator B on E such that there exists an extension of A + B, which generates a c0-semigroup on E. We prove, with some conditions on E or B, that there exist a co-semigroup (U(B)(t))t greater-than-or-equal-to 0 on E whose generator is an extension of A + B, and (U(B)(t))t greater-than-or-equal-to is given by the Dyson-Phillips expansion. We give some applications of our abstract theorem to linear transport equations.
引用
收藏
页码:339 / 349
页数:11
相关论文
共 16 条
[1]   VECTOR-VALUED LAPLACE TRANSFORMS AND CAUCHY-PROBLEMS [J].
ARENDT, W .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 59 (03) :327-352
[2]   PERTURBATION OF POSITIVE SEMIGROUPS [J].
ARENDT, W ;
RHANDI, A .
ARCHIV DER MATHEMATIK, 1991, 56 (02) :107-119
[3]  
ARENDT W, 1984, 1984 SEM BER FUNKT A, P73
[4]  
Batty C. J. K., 1984, ACTA APPL MATH, V1, P221
[5]  
DESCH W, 1984, ANN SCUOLA NORM SUP, V11, P327
[6]  
Hille E., 1957, C PUBLICATIONS, V31
[7]  
Kato T., 1954, J MATH SOC JAPAN, V6, P1, DOI [10.2969/jmsj/00610001, DOI 10.2969/JMSJ/00610001]
[8]  
Kato T., 1966, PERTURBATION THEORY
[9]  
Miyadera I., 1966, TOHOKU MATH J 2 SERI, V18, P299
[10]  
NAGEL R, 1986, LECTURE NOTES MATH, V1184