BLOW-UP AND GLOBAL EXISTENCE FOR HEAT FLOWS OF HARMONIC MAPS

被引:69
作者
CHEN, Y [1 ]
DING, WY [1 ]
机构
[1] CHINESE ACAD SCI,INST MATH,BEIJING,PEOPLES R CHINA
关键词
D O I
10.1007/BF01234431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is proved that the solution to the evolution problem for harmonic maps blows up in finite time, if the initial map belongs to some nontrivial homotopy class and the initial energy is sufficiently small. © 1990 Springer-Verlag.
引用
收藏
页码:567 / 578
页数:12
相关论文
共 19 条
[1]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[2]  
CORON JM, 1989, CR ACAD SCI I-MATH, V308, P339
[3]  
Eells J., 1978, B LOND MATH SOC, V10, P1, DOI DOI 10.1112/BLMS/10.1.1
[4]   CONVEX FUNCTIONS AND HARMONIC MAPS [J].
GORDON, WB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 33 (02) :433-&
[5]  
Hartman P., 1982, ORDINARY DIFFERENTIA
[6]  
JOST J, 1981, MANUSCRIPTA MATH, V34, P17, DOI 10.1007/BF01168706
[7]  
Ladyzhenskaya O. A., 1968, TRANSL MATH MONOGRAP, V23
[9]  
Ottarsson S. K., 1985, Journal of Geometry and Physics, V2, P49, DOI 10.1016/0393-0440(85)90019-1
[10]   THE EXISTENCE OF MINIMAL IMMERSIONS OF 2-SPHERES [J].
SACKS, J ;
UHLENBECK, K .
ANNALS OF MATHEMATICS, 1981, 113 (01) :1-24